The ice age is real. A New Ice Age begins on Earth: global cooling and climate change. When did the Ice Age end?

Consider such a phenomenon as periodic ice ages on Earth. In modern geology, it is generally accepted that our Earth periodically experiences Ice Ages in its history. During these epochs, the Earth's climate becomes sharply colder, and the Arctic and Antarctic polar caps monstrously increase in size. Not so many thousands of years ago, as we were taught, vast expanses of Europe and North America were covered with ice. Eternal ice lay not only on the slopes of high mountains, but also covered the continents with a thick layer even in temperate latitudes. Where the Hudson, the Elbe and the Upper Dnieper flow today, there was a frozen desert. All this was like an endless glacier, and now covers the island of Greenland. There are indications that the retreat of the glaciers has been halted by new ice masses and that their boundaries have varied over time. Geologists can determine the boundaries of glaciers. Traces of five or six successive movements of ice during the ice age, or five or six ice ages, have been found. Some force pushed the ice layer to temperate latitudes. Until now, neither the cause of the appearance of glaciers, nor the cause of the retreat of the ice desert is known; the timing of this retreat is also a matter of dispute. Many ideas and conjectures have been put forward to explain how the ice age began and why it ended. Some have thought that the Sun radiated more or less heat in different epochs, which explains the periods of heat or cold on the Earth; but we do not have sufficient evidence that the Sun is such a "changing star" to accept this hypothesis. The reason for the Ice Age is seen by some scientists as a decrease in the initially high temperature of the planet. Warm periods between glacial periods have been associated with heat released from the supposed decomposition of organisms in layers close to the earth's surface. The increase and decrease in the activity of hot springs were also taken into account.

Many ideas and conjectures have been put forward to explain how the ice age began and why it ended. Some have thought that the Sun radiated more or less heat in different epochs, which explains the periods of heat or cold on the Earth; but we do not have sufficient evidence that the Sun is such a "changing star" to accept this hypothesis.

Others have argued that there are colder and warmer zones in outer space. As our solar system passes through regions of cold, the ice descends in latitude closer to the tropics. But no physical factors have been found to create similar cold and warm zones in space.

Some have wondered whether precession, or the slow reversal of the earth's axis, could cause periodic fluctuations in climate. But it has been proven that this change alone cannot be so significant as to cause an ice age.

Also, scientists were looking for an answer in periodic variations in the eccentricity of the ecliptic (earth's orbit) with the phenomenon of glaciation at maximum eccentricity. Some researchers believed that winter in aphelion, the most distant part of the ecliptic, could lead to glaciation. And others believed that summer at aphelion could cause such an effect.

The reason for the Ice Age is seen by some scientists as a decrease in the initially high temperature of the planet. Warm periods between glacial periods have been associated with heat released from the supposed decomposition of organisms in layers close to the earth's surface. The increase and decrease in the activity of hot springs were also taken into account.

There is a point of view that the dust of volcanic origin filled the earth's atmosphere and caused insulation, or, on the other hand, the increasing amount of carbon monoxide in the atmosphere prevented the reflection of heat rays from the surface of the planet. An increase in the amount of carbon monoxide in the atmosphere can cause a drop in temperature (Arrhenius), but calculations have shown that this could not be the true cause of the ice age (Angstrom).

All other theories are also hypothetical. The phenomenon that underlies all these changes has never been precisely defined, and those that were named could not produce a similar effect.

Not only are the causes of the appearance and subsequent disappearance of ice sheets unknown, but the geographic relief of the area covered with ice remains a problem. Why did the ice cover in the southern hemisphere move from the tropical regions of Africa towards the South Pole, and not in the opposite direction? And why in the northern hemisphere did ice move into India from the equator towards the Himalayas and higher latitudes? Why did glaciers cover most of North America and Europe, while North Asia was free of them?

In America, the ice plain extended to a latitude of 40° and even went beyond this line, in Europe it reached a latitude of 50°, and North-Eastern Siberia, above the Arctic Circle, even at a latitude of 75° was not covered by this eternal ice. All hypotheses regarding the increasing and decreasing isolation associated with the change of the sun or temperature fluctuations in outer space, and other similar hypotheses, cannot but encounter this problem.

Glaciers formed in permafrost regions. For this reason, they remained on the slopes of high mountains. The north of Siberia is the coldest place on Earth. Why did the ice age not touch this area, although it covered the Mississippi basin and all of Africa south of the equator? No satisfactory answer to this question has been offered.

During the Last Ice Age, at the peak of the glaciation, which was observed 18,000 years ago (on the eve of the Great Flood), the borders of the glacier in Eurasia passed along approximately 50 ° north latitude (latitude of Voronezh), and the border of the glacier in North America even along 40 ° (latitude New York). At the South Pole, glaciation took over southern South America, and possibly also New Zealand and southern Australia.

The theory of ice ages was first presented in the work of the father of glaciology, Jean Louis Agassiz, "Etudes sur les glaciers" (1840). Over the past century and a half, glaciology has been replenished with a huge amount of new scientific data, and the maximum boundaries of the Quaternary glaciation were determined with a high degree of accuracy.
However, for the entire time of the existence of glaciology, it failed to establish the most important thing - to determine the causes of the onset and retreat of ice ages. None of the hypotheses put forward during this time has received the approval of the scientific community. And today, for example, in the Russian-language Wikipedia article “Ice Age” you will not find the section “Causes of Ice Ages”. And not because this section was forgotten to be placed here, but because no one knows these reasons. What are the real reasons?
Paradoxically, in fact, there have never been any ice ages in the history of the Earth. The temperature and climate regime of the Earth is set mainly by four factors: the intensity of the Sun's glow; orbital distance of the Earth from the Sun; the angle of inclination of the axial rotation of the Earth to the plane of the ecliptic; as well as the composition and density of the earth's atmosphere.

These factors, as scientific data show, remained stable throughout at least the last Quaternary period. Consequently, there were no reasons for a sharp change in the Earth's climate in the direction of cooling.

What is the reason for the monstrous growth of glaciers during the Last Ice Age? The answer is simple: in the periodic change in the location of the earth's poles. And here it should immediately be added: the monstrous growth of the Glacier during the Last Ice Age is an apparent phenomenon. In fact, the total area and volume of the Arctic and Antarctic glaciers have always remained approximately constant - while the North and South Poles changed their position with an interval of 3,600 years, which predetermined the wandering of polar glaciers (caps) on the Earth's surface. Exactly as much glacier formed around the new poles as it melted in those places where the poles left. In other words, the Ice Age is a very relative concept. When the North Pole was in North America, there was an ice age for its inhabitants. When the North Pole moved to Scandinavia, the Ice Age began in Europe, and when the North Pole “left” into the East Siberian Sea, the Ice Age “came” to Asia. An ice age is currently in full swing for the supposed inhabitants of Antarctica and the former inhabitants of Greenland, which is constantly melting in the southern part, as the previous pole shift was not strong and moved Greenland a little closer to the equator.

Thus, there have never been ice ages in the history of the Earth, and at the same time they have always been. Such is the paradox.

The total area and volume of glaciation on the planet Earth has always been, is and will be generally constant as long as the four factors that determine the climate regime of the Earth are constant.
During the pole shift, there are several ice sheets on the Earth at the same time, usually two melting and two newly formed, depending on the angle of crustal displacement.

Pole shifts on Earth occur at intervals of 3,600-3,700 years, corresponding to the orbital period of Planet X around the Sun. These pole shifts lead to a redistribution of heat and cold zones on Earth, which is reflected in modern academic science in the form of continuously replacing each other stadials (cooling periods) and interstadials (warming periods). The average duration of both stadials and interstadials is determined in modern science at 3700 years, which correlates well with the orbital period of Planet X around the Sun - 3600 years.

From academic literature:

It must be said that in the last 80,000 years the following periods were observed in Europe (years BC):
Stadial (cooling) 72500-68000
Interstadial (warming) 68000-66500
Stadial 66500-64000
Interstadial 64000-60500
Stadial 60500-48500
Interstadial 48500-40000
Stadial 40000-38000
Interstadial 38000-34000
Stadial 34000-32500
Interstadial 32500-24000
Stadial 24000-23000
Interstadial 23000-21500
Stadial 21500-17500
Interstadial 17500-16000
Stadial 16000-13000
Interstadial 13000-12500
Stadial 12500-10000

Thus, in the course of 62 thousand years, 9 stadials and 8 interstadials happened in Europe. The average duration of a stadial is 3700 years, and an interstadial is also 3700 years. The largest stadial lasted 12,000 years, and the interstadial lasted 8,500 years.

In the post-Flood history of the Earth, 5 pole shifts occurred and, accordingly, 5 polar ice sheets successively replaced each other in the Northern Hemisphere: the Laurentian ice sheet (the last antediluvian), the Scandinavian Barents-Kara ice sheet, the East Siberian ice sheet, the Greenland ice sheet and the modern Arctic ice sheet.

The modern Greenland Ice Sheet deserves special attention as the third major ice sheet coexisting simultaneously with the Arctic Ice Sheet and the Antarctic Ice Sheet. The presence of a third large ice sheet does not at all contradict the above theses, since it is a well-preserved remnant of the previous North Polar Ice Sheet, where the North Pole was located during 5200-1600 years. BC. Connected with this fact is the answer to the riddle why the extreme north of Greenland today is not affected by glaciation - the North Pole was in the south of Greenland.

Accordingly, the location of the polar ice sheets in the southern hemisphere changed:

  • 16,000 BCuh. (18,000 years ago) Recently, there has been a strong consensus in academic science regarding the fact that this year was both the peak of the maximum glaciation of the Earth and the beginning of the rapid melting of the Glacier. A clear explanation of neither one nor the other fact in modern science does not exist. What was this year famous for? 16,000 BC e. - this is the year of the 5th passage through the solar system, counting from the present moment ago (3600 x 5 = 18,000 years ago). This year, the North Pole was located on the territory of modern Canada in the Hudson Bay area. The South Pole was located in the ocean to the east of Antarctica, which suggested the glaciation of southern Australia and New Zealand. Bala's Eurasia is completely free of glaciers. “In the 6th year of K'an, the 11th day of Muluk, in the month of Sak, a terrible earthquake began and continued without interruption until 13 Kuen. The Land of the Clay Hills, the Land of Mu, was sacrificed. Having experienced two strong vibrations, she suddenly disappeared during the night;the soil was constantly shaking under the influence of underground forces, which raised and lowered it in many places, so that it settled; countries were separated from one another, then scattered. Unable to resist these terrible shudders, they failed, dragging the inhabitants with them. This happened 8050 years before this book was written.”("Code Troano" translated by Auguste Le Plongeon). The unprecedented magnitude of the catastrophe caused by the passage of Planet X has resulted in a very strong pole shift. The North Pole moves from Canada to Scandinavia, the South Pole to the ocean west of Antarctica. At the same time that the Laurentian Ice Sheet begins to melt rapidly, which coincides with the data of academic science about the end of the peak of glaciation and the beginning of the melting of the Glacier, the Scandinavian Ice Sheet is formed. At the same time, the Australian and South Zealand ice sheets melt and the Patagonian Ice Sheet forms in South America. These four ice sheets coexist for only a relatively short time, which is necessary for the two previous ice sheets to completely melt and two new ones to form.
  • 12,400 BC The North Pole is moving from Scandinavia to the Barents Sea. As a result, the Barents-Kara Ice Sheet is formed, but the Scandinavian Ice Sheet is melting only slightly as the N Pole moves a relatively small distance. In academic science, this fact has found the following reflection: “The first signs of an interglacial period (which is still ongoing) appeared as early as 12,000 BC.”
  • 8 800 BC The North Pole moves from the Barents Sea to the East Siberian Sea, in connection with which the Scandinavian and Barents-Kara ice sheets are melting, and the East Siberian ice sheet is formed. This pole shift killed off most of the mammoths. Quote from an academic study: “About 8000 BC. e. a sharp warming led to the retreat of the glacier from its last line - a wide strip of moraines stretching from central Sweden through the Baltic Sea basin to southeast Finland. Approximately at this time, the disintegration of a single and homogeneous periglacial zone occurs. In the temperate zone of Eurasia, forest vegetation predominates. To the south of it, forest-steppe and steppe zones are formed.
  • 5 200 BC The North Pole is moving from the East Siberian Sea to Greenland, causing the East Siberian Ice Sheet to melt and the Greenland Ice Sheet to form. Hyperborea is freed from ice, and a wonderful temperate climate is established in the Trans-Urals and Siberia. Ariavarta, the country of the Aryans, flourishes here.
  • 1600 BC Past shift. The North Pole is moving from Greenland to the Arctic Ocean in its current position. The Arctic Ice Sheet emerges, but the Greenland Ice Sheet remains at the same time. The last mammoths living in Siberia freeze very quickly with undigested green grass in the stomachs. Hyperborea is completely hidden under the modern Arctic ice sheet. Most of the Trans-Urals and Siberia become unsuitable for human existence, which is why the Aryans undertake their famous Exodus to India and Europe, and the Jews also make their exodus from Egypt.

“In the permafrost of Alaska ... one can find ... evidence of atmospheric disturbances of incomparable power. Mammoths and bison were torn apart and twisted as if some cosmic arms of the gods were acting in rage. In one place ... they found the front leg and shoulder of a mammoth; the blackened bones still held the remnants of soft tissues adjacent to the spine along with tendons and ligaments, and the chitinous sheath of the tusks was not damaged. There were no traces of dismemberment of carcasses with a knife or other tool (as would be the case if hunters were involved in the dismemberment). The animals were simply torn apart and scattered around the area like woven straw, although some of them weighed several tons. Mixed with clusters of bones are trees, also torn, twisted and tangled; all this is covered with fine-grained quicksand, subsequently tightly frozen” (G. Hancock, “Traces of the Gods”).

Frozen mammoths

Northeastern Siberia, which was not covered by glaciers, holds another mystery. Its climate has changed dramatically since the end of the ice age, and the average annual temperature has fallen many degrees below its previous level. The animals that once lived in the area could no longer live here, and the plants that used to grow there were no longer able to grow here. Such a change must have happened quite suddenly. The reason for this event is not explained. During this catastrophic climate change and under mysterious circumstances, all Siberian mammoths perished. And it happened only 13 thousand years ago, when the human race was already widespread throughout the planet. For comparison: Late Paleolithic rock paintings found in the caves of Southern France (Lascaux, Chauvet, Rouffignac, etc.) were made 17-13 thousand years ago.

Such an animal lived on earth - a mammoth. They reached a height of 5.5 meters and a body weight of 4-12 tons. Most mammoths died out about 11-12 thousand years ago during the last cooling of the Vistula Ice Age. This is what science tells us, and draws a picture like the one above. True, not very concerned about the question - what did these woolly elephants weighing 4-5 tons eat on such a landscape. “Of course, since it’s written in books like that”- Allen nod. Reading very selectively, and considering the given picture. About the fact that during the life of mammoths on the territory of the current tundra, birch grew (which is written in the same book, and other deciduous forests - that is, a completely different climate) - they somehow do not notice. The diet of mammoths was mainly vegetable, and adult males daily ate about 180 kg of food.

While the number of woolly mammoths was truly impressive. For example, between 1750 and 1917, the mammoth ivory trade flourished over a wide area, and 96,000 mammoth tusks were discovered. According to various estimates, about 5 million mammoths lived in a small part of northern Siberia.

Before their extinction, woolly mammoths inhabited vast parts of our planet. Their remains have been found throughout Northern Europe, Northern Asia and North America.

Woolly mammoths were not a new species. They have inhabited our planet for six million years.

A biased interpretation of the hairy and fatty constitution of the mammoth, as well as a belief in unchanging climatic conditions, led scientists to the conclusion that the woolly mammoth was an inhabitant of the cold regions of our planet. But fur-bearing animals do not have to live in cold climates. Take for example desert animals like camels, kangaroos and phoenixes. They are furry but live in hot or temperate climates. Actually most fur-bearing animals would not be able to survive in arctic conditions.

For successful cold adaptation, it is not enough just to have a coat. For adequate thermal insulation from the cold, the coat should be in an elevated state. Unlike Antarctic fur seals, mammoths lacked raised fur.

Another factor of sufficient protection against cold and humidity is the presence of sebaceous glands, which secrete oils on the skin and fur, and thus protect against moisture.

Mammoths did not have sebaceous glands, and their dry hair allowed snow to touch the skin, melt, and significantly increase heat loss (the thermal conductivity of water is about 12 times higher than that of snow).

As seen in the photo above, mammoth fur was not dense. In comparison, the fur of a yak (a cold-adapted Himalayan mammal) is about 10 times thicker.

In addition, mammoths had hair that hung down to their toes. But every arctic animal has hair on its toes or paws, not hair. Hair would collect snow on the ankle joint and interfere with walking.

The above clearly shows that fur and body fat are not proof of cold adaptation. The fat layer only indicates the abundance of food. A fat, overfed dog would not have been able to withstand an arctic blizzard and a temperature of -60°C. But arctic rabbits or caribou can, despite their relatively low fat content relative to total body weight.

As a rule, the remains of mammoths are found with the remains of other animals, such as: tigers, antelopes, camels, horses, reindeer, giant beavers, giant bulls, sheep, musk oxen, donkeys, badgers, alpine goats, woolly rhinos, foxes, giant bison, lynx, leopard, wolverine, hares, lions, elks, giant wolves, gophers, cave hyenas, bears, and many bird species. Most of these animals would not be able to survive in the arctic climate. This is additional evidence that woolly mammoths were not polar animals.

The French prehistoric expert, Henry Neville, made the most detailed study of mammoth skin and hair. At the end of his careful analysis, he wrote the following:

"It is not possible for me to find in the anatomical study of their skin and [hair] any argument in favor of adaptation to cold."

— G. Neville, On the Extinction of the Mammoth, Smithsonian Institution Annual Report, 1919, p. 332.

Finally, the diet of mammoths contradicts the diet of animals living in polar climates. How could a woolly mammoth maintain its vegetarian diet in an arctic region, and eat hundreds of pounds of greens every day, when in such a climate most of the year there is none at all? How could woolly mammoths find liters of water for daily consumption?

To make matters worse, woolly mammoths lived during the Ice Age, when temperatures were cooler than they are today. Mammoths would not have been able to survive in the harsh climate of northern Siberia today, let alone 13,000 years ago, if the then climate had been much harsher.

The above facts indicate that the woolly mammoth was not a polar animal, but lived in a temperate climate. Consequently, at the beginning of the Younger Dryas, 13 thousand years ago, Siberia was not an arctic region, but a temperate one.

"A long time ago, however, they died"- the reindeer breeder agrees, cutting off a piece of meat from the found carcass in order to feed the dogs.

"Hard"- says a more vital geologist, chewing a piece of barbecue taken from a makeshift skewer.

Frozen mammoth meat initially looked absolutely fresh, dark red in color, with appetizing streaks of fat, and the expedition even wanted to try to eat it. But as it thawed, the meat became flabby, dark gray in color, with an unbearable smell of decomposition. However, the dogs happily ate the millennial ice cream delicacy, from time to time arranging internecine fights over the most tidbits.

One more moment. Mammoths are rightly called fossils. Because in our time they are simply dug. For the purpose of obtaining tusks for crafts.

It is estimated that for two and a half centuries in the north-east of Siberia, tusks belonging to at least forty-six thousand (!) Mammoths were collected (the average weight of a pair of tusks is close to eight pounds - about one hundred and thirty kilograms).

Mammoth tusks are DIGGING. That is, they are mined from underground. Somehow, the question does not even arise - why have we forgotten how to see the obvious? Did mammoths dig holes for themselves, lay down in them for winter hibernation, and then they fell asleep? But how did they end up underground? At a depth of 10 meters or more? Why are mammoth tusks dug from river banks? And, massively. So massive that State Duma a bill was introduced equating mammoths with minerals, as well as introducing a tax on their extraction.

But for some reason they are digging massively only here in the north. And now the question arises - what happened that whole mammoth cemeteries were formed here?

What caused such an almost instantaneous mass pestilence?

Over the past two centuries, numerous theories have been proposed that attempt to explain the sudden extinction of woolly mammoths. They got stuck in frozen rivers, were over-hunted, and fell into ice crevices at the height of the global glaciation. But none of the theories adequately explains this mass extinction.

Let's try to think for ourselves.

Then the following logical chain should line up:

  1. There were a lot of mammoths.
  2. Since there were a lot of them, they should have had a good food base - not the tundra, where they are now found.
  3. If it was not the tundra, the climate in those places was somewhat different, much warmer.
  4. A slightly different climate OUTSIDE the Arctic Circle could only be if it was not TRANSArctic at that time.
  5. Mammoth tusks, and whole mammoths themselves, are found underground. They somehow got there, some event occurred that covered them with a layer of soil.
  6. Taking it as an axiom that mammoths themselves did not dig holes, only water could bring this soil, first surging, and then descending.
  7. The layer of this soil is thick - meters, and even tens of meters. And the amount of water that applied such a layer must have been very large.
  8. Mammoth carcasses are found in a very well-preserved condition. Immediately after washing the corpses with sand, their freezing followed, which was very fast.

They almost instantly froze on giant glaciers, the thickness of which was many hundreds of meters, to which they were carried by a tidal wave caused by a change in the angle of the earth's axis. This gave rise to the unjustified assumption among scientists that the animals of the middle belt went deep into the North in search of food. All remains of mammoths were found in sands and clays deposited by mud flows.

Such powerful mudflows are possible only during extraordinary major disasters, because at that time dozens, and possibly hundreds and thousands of animal cemeteries were formed throughout the North, into which not only the inhabitants of the northern regions, but also animals from regions with a temperate climate were washed away . And this allows us to believe that these giant animal cemeteries were formed by a tidal wave of incredible power and size, which literally rolled over the continents and retreating back into the ocean, carried away thousands of herds of large and small animals with it. And the most powerful mudflow "tongue", containing giant accumulations of animals, reached the New Siberian Islands, which were literally covered with loess and countless bones of various animals.

A giant tidal wave washed away gigantic herds of animals from the face of the Earth. These huge herds of drowned animals, lingering in natural barriers, terrain folds and floodplains, formed countless animal cemeteries, in which animals of various climatic zones appeared to be mixed.

Scattered bones and molars of mammoths are often found in sediments and sedimentary rocks at the bottom of the oceans.

The most famous, but far from the largest cemetery of mammoths in Russia, is the Berelekh burial. Here is how N.K. describes the mammoth cemetery in Berelekh. Vereshchagin: “Yar is crowned with a melting edge of ice and mounds… After a kilometer, an extensive scattering of huge gray bones appeared — long, flat, short. They protrude from the dark damp ground in the middle of the slope of the ravine. Sliding down to the water along a slightly turfed slope, the bones formed a spit-toe protecting the shore from erosion. There are thousands of them, the scattering stretches along the coast for about two hundred meters and goes into the water. The opposite, right bank is only eighty meters away, low, alluvial, behind it is an impenetrable willow growth ... everyone is silent, depressed by what they saw ".In the area of ​​the Berelekh cemetery there is a thick layer of clay-ash loess. Signs of an extremely large floodplain sediment are clearly traced. In this place, a huge mass of fragments of branches, roots, bone remains of animals has accumulated. The animal cemetery was washed away by the river, which, twelve millennia later, returned to its former course. Scientists who studied the Berelekh cemetery found among the remains of mammoths a large number of bones of other animals, herbivores and predators, which in normal conditions never found in huge clusters together: foxes, hares, deer, wolves, wolverines and other animals.

The theory of repeated catastrophes that destroy life on our planet and repeat the creation or restoration of life forms, proposed by Deluc and developed by Cuvier, did not convince scientific world. Both Lamarck before Cuvier and Darwin after him believed that a progressive, slow, evolutionary process governs genetics and that there are no catastrophes that interrupt this process of infinitesimal changes. According to the theory of evolution, these minor changes are the result of adaptation to the conditions of life in the struggle of species for survival.

Darwin admitted that he was unable to explain the disappearance of the mammoth, an animal much better developed than the elephant, which survived. But in accordance with the theory of evolution, his followers believed that the gradual subsidence of the soil forced the mammoths to climb the hills, and they turned out to be closed on all sides by swamps. However, if geological processes are slow, mammoths would not be trapped on isolated hills. Besides, this theory cannot be true, because the animals did not die of starvation. Undigested grass was found in their stomachs and between their teeth. This, by the way, also proves that they died suddenly. Further research showed that the branches and leaves found in their stomachs do not grow in the areas where the animals died, but further south, at a distance of more than a thousand miles. It seems that the climate has changed radically since the death of the mammoths. And since the bodies of the animals were found undecayed, but well preserved in blocks of ice, a change in temperature must have followed immediately after their death.

Documentary

Risking their lives and being in great danger, scientists in Siberia are looking for a single frozen mammoth cell. With the help of which it will be possible to clone and thereby bring back to life a long-extinct animal species.

It remains to be added that after storms in the Arctic, mammoth tusks are carried to the shores of the Arctic islands. This proves that the part of the land where the mammoths lived and drowned was heavily flooded.

For some reason, modern scientists do not take into account the facts of the presence of a geotectonic catastrophe in the recent past of the Earth. It is in the recent past.
Although for them it is already an indisputable fact of the catastrophe from which the dinosaurs died. But they attribute this event to the times of 60-65 million years ago.
There are no versions that would combine the temporary facts of the death of dinosaurs and mammoths - at the same time. Mammoths lived in temperate latitudes, dinosaurs - in the southern regions, but died at the same time.
But no, no attention is paid to the geographic attachment of animals of different climatic zones, but there is still a temporary separation.
The facts of the sudden death of a huge number of mammoths in different parts of the world have already accumulated a lot. But here the scientists again stray from the obvious conclusions.
Not only did the representatives of science make all mammoths 40 thousand years old, they also invent versions natural processes, in which these giants were overtaken by death.

American, French and Russian scientists have performed the first CT scans of Lyuba and Khroma, the youngest and best preserved mammoths.

Computed tomography (CT) slices were presented in the new issue of the Journal of Paleontology, and a summary of the results of the work can be found on the website of the University of Michigan.

Reindeer herders found Lyuba in 2007, on the banks of the Yuribey River on the Yamal Peninsula. Her corpse reached the scientists with almost no damage (only the tail was bitten off by dogs).

Chrome (this is a "boy") was discovered in 2008 on the banks of the river of the same name in Yakutia - crows and arctic foxes ate his trunk and part of his neck. Mammoths have well-preserved soft tissues (muscles, fat, internal organs, skin). Chroma was even found to have clotted blood in intact vessels and undigested milk in her stomach. The chroma was scanned in a French hospital. And at the University of Michigan, scientists took CT scans of animal teeth.

Thanks to this, it turned out that Lyuba died at the age of 30-35 days, and Khroma - 52-57 days (both mammoths were born in the spring).

Both mammoths died, choking on silt. CT scans showed a dense mass of fine-grained deposits obstructing the airways in the trunk.

The same deposits are present in Lyuba's throat and bronchi - but not inside the lungs: this suggests that Lyuba did not drown in water (as was previously believed), but suffocated, inhaling liquid mud. Chroma had a broken spine and also had dirt in his airways.

So, scientists once again confirmed our version of a global mudflow that covered the current north of Siberia and destroyed everything living there, covering a vast territory with “fine-grained sediments that clogged the respiratory tract.”

After all, such finds are observed over a vast territory and it is absurd to assume that all the mammoths found SIMULTANEOUSLY and massively began to fall into rivers and swamps.

Plus, mammoths have typical injuries for those caught in a stormy mudflow - fractures of bones and spine.

Scientists have found a very interesting detail - the death occurred either in late spring or summer. After birth in the spring, mammoths lived until death for 30-50 days. That is, the time of the change of poles was probably in the summer.

Or here's another example:

A team of Russian and American paleontologists is studying a bison that has lain in permafrost in northeast Yakutia for about 9,300 years.

The bison, found on the shores of Lake Chukchala, is unique in that it is the first representative of this species of bovids, found at such a venerable age in complete safety - with all parts of the body and internal organs.


He was found in a recumbent position with his legs bent under his belly, his neck outstretched, and his head lying on the ground. Usually in this position, ungulates rest or sleep, but in it they die a natural death.

The age of the body, determined using radiocarbon analysis, is 9310 years, that is, the bison lived in the early Holocene. Scientists also determined that his age before his death was about four years. The bison managed to grow up to 170 cm at the withers, the span of the horns reached an impressive 71 cm, and the weight was about 500 kg.

Researchers have already scanned the animal's brain, but the cause of his death is still a mystery. No injuries were found on the corpse, as well as no pathologies internal organs and dangerous bacteria.

Ecology

The ice ages that have taken place more than once on our planet have always been covered in a mass of mysteries. We know that they shrouded entire continents in cold, turning them into uninhabited tundra.

Also known about 11 such periods, and all of them took place with regular constancy. However, we still don't know much about them. We invite you to get to know the most interesting facts about the ice ages of our past.

giant animals

By the time the last ice age arrived, evolution had already mammals appeared. Animals that could survive in harsh climatic conditions were quite large, their bodies were covered with a thick layer of fur.

Scientists have named these creatures "megafauna", which was able to survive at low temperatures in areas covered with ice, for example, in the region of modern Tibet. Smaller animals couldn't adjust to new conditions of glaciation and perished.


Herbivorous representatives of the megafauna have learned to find food even under layers of ice and have been able to adapt to the environment in different ways: for example, rhinos ice age had spatulate horns, with the help of which they dug up snowdrifts.

Predatory animals, for example, saber-toothed cats, giant short-faced bears and dire wolves , perfectly survived in the new conditions. Although their prey could sometimes fight back due to their large size, it was in abundance.

ice age people

Though modern man Homo sapiens couldn't brag at the time large sizes and wool, he was able to survive in the cold tundra of the ice ages for many millennia.


Living conditions were harsh, but people were resourceful. For example, 15 thousand years ago they lived in tribes that were engaged in hunting and gathering, built original dwellings from mammoth bones, and sewed warm clothes from animal skins. When food was plentiful, they stocked up in the permafrost - natural freezer.


Mostly for hunting, such tools as stone knives and arrows were used. To catch and kill the large animals of the Ice Age, it was necessary to use special traps. When the beast fell into such traps, a group of people attacked him and beat him to death.

Little Ice Age

Between major ice ages, there were sometimes small periods. It cannot be said that they were destructive, but they also caused famine, disease due to crop failure, and other problems.


The most recent of the Little Ice Ages began around 12th-14th centuries. The most difficult time can be called the period from 1500 to 1850. At this time in the Northern Hemisphere, a fairly low temperature was observed.

In Europe, it was common when the seas froze, and in mountainous areas, for example, in the territory of modern Switzerland, the snow did not melt even in summer. Cold weather affected every aspect of life and culture. Probably, the Middle Ages remained in history, as "Time of Troubles" also because the planet was dominated by a small ice age.

periods of warming

Some ice ages actually turned out to be quite warm. Despite the fact that the surface of the earth was shrouded in ice, the weather was relatively warm.

Sometimes a sufficiently large amount of carbon dioxide accumulated in the atmosphere of the planet, which is the cause of the appearance greenhouse effect when heat is trapped in the atmosphere and warms the planet. In this case, the ice continues to form and reflect the sun's rays back into space.


According to experts, this phenomenon led to the formation giant desert with ice on the surface but quite warm weather.

When will the next ice age start?

The theory that ice ages occur on our planet at regular intervals goes against theories about global warming. There's no doubt about what's happening today global warming which may help prevent the next ice age.


Human activity leads to the release of carbon dioxide, which is largely responsible for the problem of global warming. However, this gas has another strange side effect . According to researchers from University of Cambridge, the release of CO2 could stop the next ice age.

According to the planetary cycle of our planet, the next ice age should come soon, but it can take place only if the level of carbon dioxide in the atmosphere will be relatively low. However, CO2 levels are currently so high that no ice age is out of the question any time soon.


Even if humans abruptly stop emitting carbon dioxide into the atmosphere (which is unlikely), the existing amount will be enough to prevent the onset of an ice age. at least another thousand years.

Plants of the Ice Age

The easiest way to live in the Ice Age predators: they could always find food for themselves. But what do herbivores actually eat?

It turns out that there was enough food for these animals. During the ice ages on the planet many plants grew that could survive in harsh conditions. The steppe area was covered with shrubs and grass, which fed mammoths and other herbivores.


Larger plants could also be found in great abundance: for example, firs and pines. Found in warmer regions birches and willows. That is, the climate by and large in many modern southern regions resembled the one that exists today in Siberia.

However, the plants of the Ice Age were somewhat different from modern ones. Of course, with the onset of cold weather many plants died. If the plant was not able to adapt to the new climate, it had two options: either move to more southern zones, or die.


For example, the present-day state of Victoria in southern Australia had the richest variety of plant species on the planet until the Ice Age most of the species died.

Cause of the Ice Age in the Himalayas?

It turns out that the Himalayas, the highest mountain system of our planet, directly related with the onset of the ice age.

40-50 million years ago the land masses where China and India are today collided to form the highest mountains. As a result of the collision, huge volumes of "fresh" rocks from the bowels of the Earth were exposed.


These rocks eroded, and as a result of chemical reactions, carbon dioxide began to be displaced from the atmosphere. The climate on the planet began to become colder, the ice age began.

snowball earth

During different ice ages, our planet was mostly shrouded in ice and snow. only partially. Even during the most severe ice age, ice covered only one third of the globe.

However, there is a hypothesis that at certain periods the Earth was still completely covered in snow, which made her look like a giant snowball. Life still managed to survive thanks to the rare islands with relatively little ice and with enough light for plant photosynthesis.


According to this theory, our planet turned into a snowball at least once, more precisely 716 million years ago.

Garden of Eden

Some scientists are convinced that garden of eden described in the Bible actually existed. It is believed that he was in Africa, and it is thanks to him that our distant ancestors survived the ice age.


About 200 thousand years ago came a severe ice age, which put an end to many forms of life. Fortunately, a small group of people were able to survive the period of severe cold. These people moved to the area where South Africa is today.

Despite the fact that almost the entire planet was covered with ice, this area remained ice-free. A large number of living beings lived here. The soils of this area were rich in nutrients, so there was abundance of plants. Caves created by nature were used by people and animals as shelters. For living beings, it was a real paradise.


According to some scientists, in the "Garden of Eden" lived no more than a hundred people, which is why humans do not have as much genetic diversity as most other species. However, this theory has not found scientific evidence.

The Ice Age has always been a mystery. We know that he could shrink entire continents to the size of a frozen tundra. We know there have been eleven or so, and they seem to happen on a regular basis. We definitely know that there was a lot of ice. However, there is much more to the ice ages than meets the eye.


By the time the last ice age arrived, evolution had already “invented” mammals. The animals that decided to breed and multiply during the Ice Age were quite large and covered in fur. Scientists have given them the common name "megafauna" because they managed to survive the Ice Age. However, since other, less cold-resistant species could not survive it, the megafauna felt pretty good.

Megafauna herbivores are accustomed to foraging in icy environments, adapting to their environment in a variety of ways. For example, Ice Age rhinoceroses may have had a shovel-shaped horn to remove snow. Predators like saber-toothed tigers, short-faced bears, and direwolves (yes, Game of Thrones wolves did once exist) have also adapted to their environment. Although the times were cruel, and the prey could well turn a predator into a prey, there was a lot of meat in it.

ice age people


Despite their relatively small size and little hair, Homo sapiens survived in the cold tundras of the Ice Ages for thousands of years. Life was cold and hard, but people were resourceful. For example, 15,000 years ago, people of the Ice Age lived in tribes of hunter-gatherers, built comfortable dwellings from mammoth bones and made warm clothes from animal fur. When food was plentiful, they stored it in natural permafrost refrigerators.

Since hunting tools at that time were mainly stone knives and arrowheads, complex weapons were rare. To capture and kill huge ice age animals, people used traps. When an animal fell into a trap, people attacked it in a group and beat it to death.

Little Ice Ages


Sometimes small ice ages arose between large and long ones. They were not as destructive, but could still cause starvation and disease due to failed crops and other side effects.

The most recent of these small ice ages began sometime between the 12th and 14th centuries and peaked between 1500 and 1850. For hundreds of years, the weather in the northern hemisphere was damn cold. In Europe, the seas regularly froze over, and mountainous countries (such as Switzerland) could only watch as glaciers moved, destroying villages. There were years without a summer, and nasty weather conditions affected every aspect of life and culture (perhaps this is why the Middle Ages seem gloomy to us).

Science is still trying to figure out what caused this little ice age. Among possible causes- combination of severe volcanic activity and temporary decline solar energy Sun.

warm ice age


Some ice ages may have been quite warm. The ground was covered with a huge amount of ice, but in fact the weather was quite pleasant.

Sometimes the events that lead to an ice age are so severe that even if full of greenhouse gases (which trap the sun's heat in the atmosphere, warming the planet), ice still continues to form because, given a thick enough layer of pollution, it will reflect the sun's rays back into space. Experts say this would turn Earth into a giant Baked Alaska dessert - cold on the inside (ice on the surface) and warm on the outside (warm atmosphere).


The man whose name is reminiscent of the famous tennis player was actually a respected scientist, one of the geniuses who defined the scientific environment of the 19th century. He is considered one of the founding fathers of American science, although he was French.

In addition to many other achievements, it is thanks to Agassiz that we know at least something about the ice ages. Although many have touched on this idea before, in 1837 the scientist became the first person to seriously bring ice ages into science. His theories and publications on the ice fields that covered most of the earth were foolishly dismissed when the author first presented them. Nevertheless, he did not retract his words, and further research eventually led to the recognition of his "crazy theories."

Remarkably, his pioneering work on ice ages and glacial activity was merely a hobby. By occupation, he was an ichthyologist (studying fish).

Man-made pollution prevented the next ice age


Theories that ice ages repeat on a semi-regular basis, no matter what we do, often clash with theories about global warming. While the latter are certainly authoritative, some believe that it is global warming that may be useful in the future fight against glaciers.

Human-caused carbon dioxide emissions are considered an essential part of the global warming problem. However, they have one strange side effect. According to researchers from the University of Cambridge, CO2 emissions may be able to stop the next ice age. How? Although the planetary cycle of the Earth is constantly trying to start an ice age, it will only start if the level of carbon dioxide in the atmosphere is extremely low. By pumping CO2 into the atmosphere, humans may have accidentally made ice ages temporarily unavailable.

And even if the concern about global warming (which is also extremely bad) forces people to reduce their CO2 emissions, there is still time. At present, we have sent so much carbon dioxide into the sky that the ice age will not start for at least another 1000 years.

Plants of the Ice Age


It was relatively easy for predators during the ice ages. After all, they could always eat someone else. But what did herbivores eat?

It turns out that everything you wanted. In those days, there were many plants that could have survived the Ice Age. Even in the coldest times, steppe-meadow and tree-shrub areas remained, which allowed mammoths and other herbivores not to die of hunger. These pastures were full of plant species that thrive in cold, dry weather, such as spruces and pines. In warmer areas, birches and willows were abundant. In general, the climate at that time was very similar to Siberian. Although the plants, most likely, were seriously different from their modern counterparts.

All of the above does not mean that the ice ages did not destroy part of the vegetation. If the plant could not adapt to the climate, it could only migrate through the seeds or disappear. Australia once had the longest list of diverse plants until glaciers wiped out a good part of them.

The Himalayas may have caused an ice age


Mountains, as a rule, are not famous for actively causing anything but occasional landslides - they just stand there and stand. The Himalayas can refute this belief. Perhaps they are directly responsible for causing the Ice Age.

When the landmasses of India and Asia collided 40-50 million years ago, the collision grew massive rock ridges into the Himalaya mountain range. It brought out great amount"fresh" stone. Then the process of chemical erosion began, which removes a significant amount of carbon dioxide from the atmosphere over time. And this, in turn, could affect the climate of the planet. The atmosphere "cooled" and caused an ice age.

snowball earth


During most ice ages, ice sheets cover only part of the world. Even a particularly severe ice age covered, as they say, only about one third of the globe.

What is "Snowball Earth"? The so-called Snowball Earth.

Snowball Earth is the chilling grandfather of the ice ages. This is a complete freezer that literally froze every part of the planet's surface until the Earth froze into a huge snowball flying in space. The few that survived a complete freeze either clung to rare places with relatively little ice, or, in the case of plants, clung to places where there was enough sunlight for photosynthesis.

According to some reports, this event happened at least once, 716 million years ago. But there could be more than one such period.

garden of eden


Some scientists seriously believe that the Garden of Eden was real. They say he was in Africa and was the only reason our ancestors survived the Ice Age.

Just under 200,000 years ago, a particularly hostile ice age was killing species left and right. Fortunately, a small group of early humans were able to survive the terrible cold. They stumbled upon the coast that is now represented by South Africa. Despite the fact that ice was reaping its share all over the world, this area remained ice-free and completely habitable. Her soil was rich in nutrients and provided plenty of food. There were many natural caves that could be used as shelter. For a young species struggling to survive, it was nothing short of heaven.

The human population of the "Garden of Eden" numbered only a few hundred individuals. This theory is supported by many experts, but it still lacks conclusive evidence, including studies that show that humans have much less genetic diversity than most other species.

Scientists note that the ice age is part of the ice age, when the earth covers ice for long millions of years. But many people call the ice age a segment of the history of the Earth, which ended about twelve thousand years ago.

It is worth noting that ice age history had a huge number of unique features that have not reached our time. For example, unique animals that were able to adapt to existence in this difficult climate are mammoths, rhinos, saber-toothed tigers, cave bears and others. They were covered with thick fur and quite large in size. Herbivores adapted to get food from under the icy surface. Let's take rhinos, they raked ice with their horns and ate plants. Surprisingly, the vegetation was varied. Of course, many plant species disappeared, but herbivores had free access to food.

Despite the fact that the ancient people were not large in size and did not have a cover of wool, they also managed to survive during the Ice Age. Their life was incredibly dangerous and difficult. They built small dwellings for themselves and insulated them with the skins of dead animals, and ate the meat. People came up with various traps to lure large animals there.

Rice. 1 - Ice Age

For the first time, the history of the Ice Age was discussed in the eighteenth century. Then geology began to form as a scientific branch, and scientists began to find out what origin the boulders in Switzerland have. Most researchers agreed in a single point of view that they have a glacial beginning. In the nineteenth century, it was suggested that the planet's climate was subject to severe cooling. A little later, the term itself was announced "ice Age". It was introduced by Louis Agassiz, whose ideas were not at first recognized by the general public, but then it was proved that many of his works really have a basis.

In addition to the fact that geologists were able to establish the fact that the ice age took place, they also tried to find out why it arose on the planet. The most common opinion is that the movement of lithospheric plates can block warm currents in the ocean. This gradually causes the formation of an ice mass. If large-scale ice sheets have already formed on the surface of the Earth, then they will cause a sharp cooling by reflecting sunlight, and therefore heat. Another reason for the formation of glaciers could be a change in the level of greenhouse effects. The presence of large Arctic massifs and the rapid spread of plants eliminates the greenhouse effect by replacing carbon dioxide with oxygen. Whatever the reason for the formation of glaciers, this is a very long process that can also enhance the influence of solar activity on the Earth. Changes in our planet's orbit around the Sun make it extremely susceptible. The remoteness of the planet from the "main" star also has an effect. Scientists suggest that even during the largest ice ages, the Earth was covered with ice only one third of the entire area. There are suggestions that ice ages also took place, when the entire surface of our planet was covered with ice. But this fact is still controversial in the world of geological research.

To date, the most significant glacial massif is the Antarctic. The thickness of the ice in some places reaches more than four kilometers. Glaciers move at an average speed of five hundred meters per year. Another impressive ice sheet is found in Greenland. Approximately seventy percent of this island is occupied by glaciers, and this is one tenth of the ice of our entire planet. On the this moment time, scientists believe that the ice age will not be able to start for at least another thousand years. The whole point is that in modern world there is a huge release of carbon dioxide into the atmosphere. And as we found out earlier, the formation of glaciers is possible only at a low level of its content. However, this poses another problem for mankind - global warming, which can be no less massive than the beginning of the ice age.