Как защититься от ксенобиотиков. Что такое ксенобиотики и как они уничтожаются. Механизмы защиты организмов от ксенобиотиков

Ученые обнаружили, что в организме животных и человека имеется довольно много различных механизмов защиты от ксенобиотиков. Главные из них:

· Система барьеров, препятствующих проникновению ксенобиотиков во внутреннюю среду организма и защищающих особо важные органы;

· Особые транспортные механизмы для выведения ксенобиотиков из организма;

· Ферментные системы, которые превращают ксенобиотики в соединения менее токсичные и легче удаляемые из организма;

·Тканевые депо, где могут накапливаться некоторые ксенобиотики.

Ксенобиотик, попавший в кровь, как правило, транспортируется в наиболее важные органы - центральную нервную систему, железы внутренней секреции и т.д., в которых расположены - гистогематические барьеры. К сожалению, гистогематический барьер не всегда бывает непреодолимым для ксенобиотиков. Более того, некоторые из них могут повреждать клетки, образующие гистогематические барьеры, и те становятся легко проницаемыми.

Транспортные системы, выводящие ксенобиотики из крови, обнаружены во многих органах млекопитающих, в том числе и человека. Наиболее мощные находятся в клетках печени и почечных канальцев.

Липидная мембрана этих клеток не пропускает водорастворимые ксенобиотики, но в этой мембране имеется специальный белок-переносчик, который опознает подлежащее удалению вещество, образует с ним транспортный комплекс и проводит через липидный слой из внутренней среды. Затем другой переносчик выводит из клетки вещество во внешнюю среду. Иначе говоря, все антропогенные органические вещества, образующие во внутренней среде отрицательно заряженные ионы (основания), выводятся одной системой, а образующие, положительно заряженные ионы (кислоты) - другой. К 1983 году было описано более 200 соединений разного химического строения, которые способна опознавать и выводить система транспорта органических кислот в почке.

Но, к сожалению, и системы выведения ксенобиотиков не всесильны. Некоторые ксенобиотики могут разрушать транспортные системы например, таким действием обладают синтетические антибиотики пенициллинового ряда - цефалоридины, по этой причине они не применяются в медицине.

Следующий механизм защиты – ферментные системы , которые превращают ксенобиотики в менее ядовитые и легче поддающиеся выводу соединения. Для этого используются ферменты, катализирующие или разрыв какой-либо химической связи в молекулу ксенобиотика, или, наоборот, соединение ее с молекулами других веществ. Чаще всего в итоге получается органическая кислота, которая легко удаляется из организма.

Наиболее мощные ферментные системы находятся в клетках печени. В гепатоцитах могут обезвреживаться даже такие опасные вещества, как полициклические ароматические углеводороды, способные вызывать рак. Но иногда в результате работы этих ферментных систем образуются продукты, гораздо более ядовитые и опасные, чем исходный ксенобиотик.

Депо для ксенобиотиков. Некоторые из них избирательно накапливаются в определенных тканях и длительное время в них сохраняются; в этих случаях и говорят о депонировании ксенобиотика. Так, хлорированные углеводороды хорошо растворимы в жирах и поэтому избирательно накапливаются в жировой ткани животных и человека. Одно из таких соединений ДДТ, до сих пор обнаруживается в жировой ткани человека и животных, хотя его применение в большинстве стран мира запрещено лет 20 назад. Соединения тетрациклинного ряда сродни кальцию, и потому избирательно депонируются в растущей костной ткани и т.д.

Основные неорганические и органические ксенобиотики, распространенные в биосфере

Ванадий

Соединения ванадия используются в металлургической, машиностроительной промышленности, в текстильном и стекольном производствах, в виде феррованадия используется для производства стали и чугуна.

Основные пути поступления в организм человека органы дыхания, выделение преимущественно с мочой.

Ванадий и его соединения необходимы для нормальной жизнедеятельности человека. Они обладают инсулин - сберегающим эффектом, снижают уровень глюкозы и липидов в крови, нормализуют активность ферментов печени.

В избыточном количестве соединения ванадия обладают генотоксическим эффектом (вызывая хромосомные аберрации), способны нарушать основной обмен веществ, избирательно ингибировать или активизировать ферменты, участвующие в метаболизме фосфата, синтезе холестерина, могут изменять нормальный состав белковых фракций крови (увеличивать количество свободных аминокислот). 4-х и 5-ти валентный ванадий способен образовывать комплексные соединения с большим числом биологически активных веществ: рибозой, АМФ, АТФ, серином, альбумином, аскорбиновой кислотой.

Соединения ванадия контактируют с поверхностью клеточных мембран, в частности эритроцитов, нарушая ее проницаемость и способны вызывать гибель клеток.

По характеру поражений органов и тканей соединений ванадия могут быть отнесены к ядам общетоксического действия. Они вызывают поражение сердечно-сосудистой, дыхательной, центральной нервной систем. Симптомы острого отравления соединениями ванадия сходны с приступами бронхиальной астмы.

При хроническом отравлении соединениями ванадия характерны головная боль, головокружение, бледность кожных покровов, коньюктивиты, кашель иногда с кровавой мокротой, носовые кровотечения, дрожание конечностей (тремор). Наиболее тяжелая клиническая картина развивается при вдыхании паров и пыли в производстве V 2 O 3 (это соединение используется как протрава в текстильной промышленности) и может закончиться смертельным исходом.

Кадмий

Широко используется для получения кадмиевых пигментов, необходимых для производства лаков, красок, эмалей посуды. Его источниками могут быть локальные выбросы с промышленных комплексов, металлургических предприятий, дым сигарет и печных труб, выхлопные газы автомобилей.

Накапливаясь в природной среде, кадмий по пищевым цепям попадает в организм человека. Источниками его являются продукты животного (свиные и говяжьи почки, яйца, морепродукты, устрицы) и растительного происхождения (овощи, ягоды, грибы, особенно луговые шампиньоны, ржаной хлеб). Много кадмия содержится в сигаретном дыму (одна выкуренная сигарета обогащает организм курильщика 2 мг кадмия).

Кадмий оказывает на организм политропное действие.

Кадмий обладает большим сродством к нуклеиновым кислотам, вызывая нарушение их метаболизма. Он нарушает синтез ДНК, ингибирует ДНК-полимеразу, мешает присоединению тимина.

Ферментотоксическое действие кадмия проявляется, прежде всего, в способности блокировать SН-группы в оксиредуктазе и сукцинатдигидрогеназе акцепторов холина. Кадмий способен изменять активность каталазы, щелочной фосфатазы, цитохромоксидазы, карбоксипептидазы, снижать активность пищеварительных ферментов в частности трипсина.

На клеточном уровне избыточное количество кадмия приводит к увеличению гладкого ЭПР, изменению в мембранах митохондрий, увеличению лизосом.

Мишенью в организме человека служат нервная, выделительная, репродуктивная системы. Кадмий хорошо проникает через плаценту, может вызывать спонтанные аборты (Л. Чопикашвили, 1993) и наряду с другими тяжелыми металлами способствовать развитию наследственной патологии.

После достижения концентрации кадмия 0,2 мг/кг веса появляются симптомы отравления.

Острое отравление кадмием может проявляться в виде токсической пневмонии и отека легких.

Хроническое отравление проявляется в виде гипертонии, боли в области сердца, болезни почек, боли в костях и суставах. Характерны сухость и шелушение кожи, выпадение волос, носовые кровотечения, сухость и першение в горле, появление на шейке зубов желтой каймы.

Марганец

Большое распространение марганец нашел в промышленности по производству стали, чугуна, при электросварке, в лакокрасочном производстве, в сельском хозяйстве при подкормке сельскохозяйственных животных.

Пути проникновения в основном через органы дыхания, но может проникать через желудочно-кишечный тракт и даже неповрежденную кожу.

Марганец депонируется в клетках головного мозга, паренхиматозных органах, в костях.

В организме марганец участвует в стабилизации нуклеиновых кислот, участвует в процессах редупликации, репарации, транскрипции, в окислительном фосфорилировании, синтезе витаминов С и В 1 , усиливает обмен веществ, обладает липотропным действием. Он регулирует процессы кроветворения, минеральный обмен, процессы роста и размножения. Попадая в течение длительного времени и в больших количествах в организм человека, марганец и его соединения оказывают токсическое действие.

Марганец обладает мутагенным эффектом. Он накапливается в митохондриях, нарушает энергетические процессы в клетке, способен угнетать активность лизосомальных ферментов, аденазинфосфатазы и других.

Марганец обладает нейротоксическим, аллергическим действием, нарушает функцию печени, почек, щитовидной железы. У женщин длительное время контактирующих с марганцем отмечается нарушение менструации, самопроизвольные аборты, рождение недоношенных детей.

Хроническое отравление соединениями марганца проявляется

следующими симптомами: повышенная утомляемость, боли в мышцах, особенно в нижних конечностях, апатией, вялостью, заторможенностью.

Ртуть

Поступление ртути в окружающую среду может происходить с промышленных стоков с предприятий по изготовлению пластмассы. каустической соды, химических удобрений. Помимо этого источниками

ртути являются: мастика для полов, мази и кремы для смягчения кожи, пломбы из амальгамы, водоэмульсионные краски, фотопленка.

Пути поступления в организм в основном через желудочно-кишечный тракт, часто с морепродуктами (рыбой, моллюсками), рисом и т.д. Выводиться из организма почками.

Ртуть оказывает генотоксический эффект, вызывая повреждения ДНК и генные мутации. Доказаны эмбриотоксический, тератогенный (не вынашивание беременности, рождение детей с аномалиями развития) и канцерогенный эффекты. Ртуть обладает тропностью к нервной и иммунной системам. Под действием ртуть снижается количество Т- лимфоцитов и может развиться аутоимунный гломерулонефрит.

Отравления ртутью приводят к развитию заболевания Минамато.

В 1953 году в Японии в районе залива Минамато от отравления ртути заболело 120 человек, из них умерли 46 человек,

Клиническая картина начинается обычно через 8-24 часа и выражается общей слабостью, повышением температуры, покраснение зева, сухим кашлем без мокроты. Затем присоединяются стоматит (воспалительные процессы ротовой полости), боли в области живота, тошнота, головная боль, бессонница, депрессия, неадекватные эмоциональные реакции, страхи.

Свинец

Основными источниками свинца являются выхлопные газы автомобилей, выбросы авиационных двигателей, старая краска на домах, вода, протекающая по покрытым свинцом трубами, овоще, выращенные вблизи автомагистралей.

Основные пути поступления в организм желудочно-кишечный тракт и органы дыхания.

Свинец относится к кумулятивным ядам, он постепенно накапливается в организме человека, в костях, мышцах, поджелудочной железе, головном мозге, печени и почках.

Токсичность свинца связана с его комплексообразующими свойствами. Образование комплексных соединений свинца с белками, фосфолипидами и нуклеотидами приводит к их денатурации. Соединения свинца угнетает энергетический баланс клетки.

Свинец обладает мембраноповреждающим эффектом, он накапливается в цитоплазматической мембране и мембранных органоидах.

Иммунотоксическое действие проявляется в понижении

неспецифической резистентности организма (снижении активности лизоцима слюны, бактерицидности кожи).

Доказаны мутагенное и канцерогенное действия свинца.

Отравление свинцом может проявляться следующими симптомами: снижение аппетита, депрессия, анемия (свинец снижает скорость образования эритроцитов в костном мозге и блокирует синтез гемоглобина), судороги, обмороки и т.д.

Отравление свинцом у детей может в тяжелых случаях закончиться смертельным исходом или при средней тяжести умственной отсталостью.

Хром

Соединения хрома широко применяются в народном хозяйстве, в металлургической, фармацевтической промышленности, при производстве стали, линолеума, карандашей, в фотографии и т.д.

Пути поступления: органы дыхания, желудочно-кишечный тракт, может всасываться через неповрежденную кожу. Выделяется всеми экскреторными органами.

В биологических дозах хром является постоянным и необходимым компонентом различных тканей, активно участвует в процессах клеточного метаболизма.

Поступая в организм в избыточных концентрациях, хром накапливается в легких, печени и почках.

Механизм патогенного действия.

Поступая в клетку, соединения хрома изменяют ее митотическую активность. В частности могут вызвать задержку митоза, нарушать цитотомию, вызывать асимметричные и многополюсные митозы, приводить к образованию многоядерных клеток. Подобные нарушения доказывают канцерогенный эффект соединений хрома.

Генотоксический эффект соединений хрома проявляется в его способности повышать частоту хромосомных аберраций, вызывать генные мутации по типу «замены пар оснований» или « сдвигу рамки считывания», способствовать образованию полиплоидных и анеуплоидных клеток. (А.Б. Бенгалиев, 1986).

Помимо мутагенного и канцерогенного действия соединения хрома способны вызывать денатурацию белков плазмы крови, нарушать ферментативные процессы в организме, вызывать изменения органов дыхания, желудочно-кишечного тракта, печени, почек и нервной системы. Способствовать развитию аллергических процессов, в частности дерматитов.

Острое отравление соединениями хрома проявляется головокружением, ознобом, тошнотой, рвотой, болью в животе.

При постоянном длительном контакте с соединениями хрома развиваются бронхиты, бронхиальная астма, дерматиты, рак легких. На коже, чаще на боковых поверхностях кистей рук, в нижней части голени появляются своеобразные хромовые язвы. Язвы по началу поверхностные, мало болезненные, имеют вид « птичьих глазков», в дальнейшем они углубляются и становятся очень болезненными.

Цинк

Соединения цинка используются при плавке свинцовоцинковой руды, в производстве белил, при плавке алюминия, при оцинковывании посуды Окись цинка применяется в производстве стекла, керамики, спичек, косметических средств, зубного цемента.

Пути поступления - преимущественно органы дыхания, выделяется в основном через кишечник. Депонируется в костях, волосах, ногтях.

Цинк является биоэлементом и входит в состав многих ферментов и гормонов (инсулина).Дефицит его приводит к атрофии лимфоидных органов, нарушению функции Т-хелперов.

Поступая в организм в избытке, цинк нарушает проницаемость клеточных мембран, накапливается в цитоплазме и ядре клетки, способен образовывать комплексы с фосфолипидами, аминокислотами и нуклеиновыми кислотами, повышать активность лизосомальных ферментов. При вдыхании паров цинка происходит денатурирование белков слизистых оболочек и альвеол, всасывание которых приводит к развитию « литейной лихорадки», основными проявлениями которой являются: появление сладковатого вкуса во рту, жажда, чувство усталости, боли в груди, сонливость, сухой кашель. Затем повышается температура до 39-40 С, сопровождается ознобом и держится в течении нескольких часов и снижается до нормальных цифр.

Болезненное состояние длиться обычно 2-4 дня. В анализе крови повышение сахара, в анализе мочи появление сахара, цинка, меди.

В качестве защиты можно рекомендовать пользоваться на предприятиях по производству цинка противогазами, специальными защитными очками и спецодеждой. Постоянное проветривание помещений. Употребление в пищу продукты, содержащие витамин С.

Механизмы защиты организма от ксенобиотиков

Ученые обнаружили, что в организме животных и человека имеется довольно много различных механизмов защиты от ксенобиотиков. Главные из них:

Система барьеров, препятствующих проникновению ксенобиотиков во внутреннюю среду организма и защищающих особо важные органы;

    особые транспортные механизмы для выведения ксенобиотиков из организма;

    ферментные системы, которые превращают ксенобиотики в соединения менее токсичные и легче удаляемые из организма;

    тканевые депо, где могут накапливаться некоторые ксенобиотики. Ксенобиотик, попавший в кровь, как правило, транспортируется в наиболее важные органы - центральную нервную систему, железы внутренней секреции и т.д., в которых расположены - гистогематические барьеры. К сожалению, гистогематический барьер не всегда бывает непреодолимым для ксенобиотиков. Более того, некоторые из них могут повреждать клетки, образующие гистогематические барьеры, и те становятся легко проницаемыми.

Транспортные системы, выводящие ксенобиотики из крови, обнаружены во многих органах млекопитающих, в том числе и человека. Наиболее мощные находятся в клетках печени и почечных канальцев.

Липидная мембрана этих клеток не пропускает водорастворимые ксенобиотики, но в этой мембране имеется специальный белок-переносчик, который опознает подлежащее удалению вещество, образует с ним транспортный комплекс и проводит через липидный слой из внутренней среды. Затем другой переносчик выводит из клетки вещество во внешнюю среду. Иначе говоря, все антропогенные органические вещества, образующие во внутренней среде отрицательно заряженные ионы (основания), выводятся одной системой, а образующие, положительно заряженные ионы (кислоты) - другой. К 1983 году было описано более 200 соединений разного химического строения, которые способна опознавать и выводить система транспорта органических кислот в почке.

Но, к сожалению, и системы выведения ксенобиотиков не всесильны. Некоторые ксенобиотики могут разрушать транспортные системы например, таким действием обладают синтетические антибиотики пенициллинового ряда - цефалоридины, по этой причине они не применяются в медицине.

Следующий механизм защиты - ферментные системы, которые превращают ксенобиотики в менее ядовитые и легче поддающиеся выводу соединения. Для этого используются ферменты, катализирующие или разрыв какой-либо химической связи в молекулу ксенобиотика, или, наоборот, соединение ее с молекулами других веществ. Чаще всего в итоге получается органическая кислота, которая легко удаляется из организма.

Наиболее мощные ферментные системы находятся в клетках печени. В гепатоцитах могут обезвреживаться даже такие опасные вещества, как полициклические ароматические углеводороды, способные вызывать рак. Но иногда в результате работы этих ферментных систем образуются продукты, гораздо более ядовитые и опасные, чем исходный ксенобиотик.

Депо для ксенобиотиков. Некоторые из них избирательно накапливаются в определенных тканях и длительное время в них сохраняются; в этих случаях и говорят о депонировании ксенобиотика. Так, хлорированные углеводороды хорошо растворимы в жирах и поэтому избирательно накапливаются в жировой ткани животных и человека. Одно из таких соединений ДДТ, до сих пор обнаруживается в жировой ткани человека и животных, хотя его применение в большинстве стран мира запрещено лет 20 назад. Соединения тетрациклинного ряда сродни кальцию, и потому избирательно депонируются в растущей костной ткани и т.д.

Основная литература

1. Шилов И.А. Экология. – М.: Высшая школа, 1998.

2. Коробкин В.И., Передельский Л.В. Экология. – Ростов н/Д: Издательство «Феникс» 2000.-576с.

3. Королев А.А. Медицинская экология. – М.: «Академия» 2003. – 192с.

4. Самыкина Л.Н., Федосейкина И.В., Богданова Р.А., Дудина А.И., КуликоваЛ.Н., Самыкина Е.В. Медицинские проблемы обеспечения качества жизни - Самара: ООО «ИПК» «Содружество», 2007. – 72с.

Дополнительная литература.

1.Агаджанян Н.А., Воложин А.И., Евстафьева Е.В. Экология человека и концепция выживания. - М.: ГОУ ВУНМЦ МЗ РФ, 2001.

2.Алексеев С. В., Янущьянц О. И., Гигиеническая проблема экологии детства в современных условиях. Экологическая безопасность городов: Тез. докл. науч. – практ. конф. – С.- Пб, 1993.

3.Бурлакова Т. И., Самарин С. А., Степанов Н. А. Роль факторов среды обитания в онкологической заболеваемости населения промышленного города. Гигиенические проблемы охраны здоровья населения. Материалы конференции. Самара., 2000.

4.Буклешева М. С., Горбатова И. Н. Некоторые закономерности формирования заболеваемости детского населения в районе крупного нефтехимического комплекса./Клинико- гигиенические аспекты профилактики профзаболеваний на предприятиях городов Среднего Поволжья: сб0к науч. тр. МНИИГ им. Ф. Ф. Эрисмана. – М., 1986.

5.Галкин Р. А., Маковецкая Г. А., Стукалова Т. И. и др. Проблемы здоровья детей техногенных провинций./ Окружающая среда и здоровье: Тез. докл. науч. – практ. конф.- Казань, 1996.

6.Добло А. Д., Логашова Н. Б. Эколого- гигиенические аспекты водоснабжения оьласти./ Гигиенические проблемы охраны здоровья населения. Материалы конференции / Самара, 2001.

7.Жукова В. В., Тимохин Д. И. Гигиенические проблемы сохранения здоровья населения крупных городов. / Гигиена на рубеже 21 века: Материалы конференции. Воронеж. – 2000.

8.Маковецкая Д. А., Гасилина Е. С., Каганова Т. И. Агрессивные факторы и здоровье детей. / Материалы 6 Международного конгресса « Экология и здоровье человека». Самара, 1999.

9.Потапов А. И., Ястребов Г. Г. Тактика и стратегтя комплексных гигиенических исследований. // Гигиенические проблемы охраны здоровья населения. Материалы конференции. Самара, 2000.

10.Сукачева И. Ф., Кудрина Н. В., Матюнина И. О. Эколого – гигиеническая ситуация Саратовского водохранилища в пределах города Самары. / Гигиенические проблемы здоровья населения. Материалы конференции. / Самара, 2001.

11.Спиридонов А. М., Сергеева Н. М. О состоянии окружающей среды и здоровья населения Самарской области // Экология и здоровье человека: Сб. науч. тр./ - Самара.

Наименование параметра Значение
Тема статьи: Защита организма от проникновения ксенобиотиков
Рубрика (тематическая категория) Производство

Ксенобиотики – общее название всœех чужеродных для организма веществ неживой природы. Система защиты, имеет 3 базовых уровня:

1) барьерный – кожные покровы, особенности строения верхних дыхательных путей, избирательная проницаемость клеток эпителия, выстилающих внутреннюю поверхность путей организма;

2) ферментный – ферменты клеток различных тканей, ферменты пищеварительного тракта могут трансформировать проникшие в организм ксенобиотики в соединœения типа органических оснований или органических кислот;

3) Транспортный – представлен специальными клетками различных тканей, имеющими в своей структуре белок переносчик. Он способен связываться с органическими основаниями или кислотами и переносить их внутрь клетки или из неё. По конвееру таких клеток трансформируемые ферментами ксенобиотики выносятся в кровь и присоединяются к эритроцитам. Эритроциты несут их в печень и там от них освобождаются.

Система защиты сформировалась в ходе биологической эволюции животных и человека за миллионы лет и высоко эффективна по отношению к природным ксенобиотикам. Развитие производства привело к накоплению и появлению в среде новых химических веществ, которые преодолевают барьеры организма. Многие, благодаря своим химическим свойствам, разрушают их, создавая условия для проникновения природных ксенобиотиков и открывая новые ворота для инфекций, что повышает возможности развития инфекций и аллергических заболеваний. Ферментная система организма ограничена наследственной информацией и в связи с этим в ее состав не входят ферменты, способные трансформировать большинство производственных ксенобиотиков. Транспортная система изначально способна к выведению из организма только определœенных групп химических соединœений и тесно связана с эффективностью ферментной системы. По этой причине многие современные ксенобиотики проникают во внутреннюю среду организма, не выводятся из него и накапливаются в определœенных тканях, называемых депо (чаще всœего жировая ткань). Проникновение ксенобиотиков в организм может привести к острому или хроническому отравлению, спровоцировать концерогенез, аллергию, повышать частоту мутаций.

12.7 Система контроля индивидуальности и целостности организма (Иммунная система)

Как известно, наследственная информация организма сводится к иформации о структуре его белков, т. е. всœе белки организма синтезируются на базе его индивидуальной информации. Система контроля индивидуальности и целостности организма принято называть иммунной системой. Реакции иммунной системы, направленные на распознавание, нейтрализацию и выведение из организма чужеродных белковых соединœений, называются иммунитетом. Способность вызывать иммунные реакции при проникновении в организм принято называть иммуногенность. Иммуногенностью обладают только белки, их соединœения и крупные углеводы. При этом при попадании в организм химического комплекса не иммуногенного вещества, к примеру лекарственного препарата с белком, иммунная реакция тоже будет развиваться, причем продукты этой реакции будут взаимодействовать и со всœем комплексом, и только с белком, и только с не иммунногенным веществом, входящим в комплекс. Т. е., в случае если в силу случайных обстоятельств или неправильного применения лекарств образуется его комплекс с собственным или любым другим белком, то через неĸᴏᴛᴏᴩᴏᴇ время продукты иммунных реакций организма будут вырабатываться и при поступлении только лекарства. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, развивается иммунная (аллергическая) реакция на любые не иммуногенные вещества. Белковые соединœения, вызывающие при проникновении в организм иммунные реакции и способные взаимодействовать с продуктами этих реакций, называются антигенами.

Иммунные реакции делят на 2 группы:

Неспецифические - это такие реакции, продукты которых постоянно вырабатываются в организме, постоянно присутствуют в нем и способны нейтрализовать большие группы возможных антигенов. В первую очередь к ним относят фагоциты - клетки иммунной системы, циркулирующие в крови или присутствующие в разных органах, способные поглощать частицы антигенов, переваривать их, расщепляя на безвредные вещества, выводимые из организма. К неспецифическим продуктам иммунной системы относится комплемент . Комплемент - это система ферментов в сыворотке крови, которая расщепляет чужеродные растворимые антигены. Возможности и фагоцитоза, и комплемента ограничены, т.к. они нейтрализуют только антигены, обладающие определœенными общими свойствами. К примеру, наличие в химической структуре определœенной химической группы. Антигены, не имеющие этих общих свойств, продуктами неспецифических реакций нейтрализоваться не будут.

Специфические иммунные реакции - это такие реакции, продукты которых вырабатываются только в ответ на проникновение антигена и могут взаимодействовать только с этим антигеном. Основным продуктом специфических иммунных реакций являются антитела (At) или иммуноглоблины (Ig). Иммуноглобулины - ϶ᴛᴏ белки сыворотки крови, вырабатываемые клетками иммунной системы в ответ на проникновение антигена, в молекуле которых есть участок, способный взаимодействовать только с этим антигеном. При взаимодействии иммуноглобулина с антигеном образуется комплекс – ʼʼантиген-антителоʼʼ, который может:

а) прикрепляться к эритроцитам и вместе с ними, поступая в печень, затем выводиться из организма;

б) разрушаться фагоцитами или комплементом вне зависимости от исходных свойств антигена;

Учитывая зависимость отформы нейтрализации антигена иммуноглобулины делят на классы: IgA, IgM, IgG, IgE. Главное отличие специфических иммунных реакций от всœех других защитных реакций организма состоит в том, что генетически запрограммированы не определœенные продукты, нейтрализующие определœенные антигены, а способность вырабатывать антитела в ответ на проникновение любого антигена, способные нейтрализовать только данный антиген. Благодаря этому возможности специфических иммунных реакций безграничны и обеспечивают защитную реакцию против любого вероятного ифекционного агента. При этом, поскольку развиваются они только после проникновения антигена в организм и их развитие требует времени, возбудитель инфекции успевает размножаться в организме, разрушая его, что приводит к заболеванию. Иногда скорость размножения и разрушительное действие возбудителя успевают сделать организм не жизнеспособным до полного развития защитных реакций. При этом после выздоровления в организме остаются клетки ʼʼиммунологической памятиʼʼ, которые при вторичном проникновении того же антигена приведут к очень быстрому накоплению необходимых антител, и заболевания может не быть вообще или оно будет проходить в легкой форме.

Иммунодефициты – нарушения в работе иммунной системы, приводящие к недостатку или полному отсутствию продуктов тех или иных иммунных реакций.

Первичные иммунодефициты – обусловлены наследственностью. К ним относят несколько редких наследственных заболеваний и физиологический иммунодефицит новорожденных. Так как к моменту рождения формирование иммунной системы не завершено, количество антител вырабатываемых в организме ребенка до 13 лет в 1000-10 раз меньше чем у взрослого.

Вторичные иммунодефициты – развиваются в результате взаимодействия организма со средой. Основные причины:

1) любая травма вызывает временный иммунодефицит пропорциональной тяжести травмы.

2) психотропные вещества подавляющие центральную нервную систему. Любая операция под общим наркозом вызывает иммунодефицит на 2,5 месяца.

3) недостаточное белковое питание или нарушение белкового обмена веществ.

4) любой стресс.

6) компоненты выбросов транспорта и производства подавляют иммунные реакции.

Широкое распространение всœех перечисленных факторов в среде обитания современного человека привело тому, что, по данным ВОЗ до 80% населœения Земли постоянно или периодически имеет ту или иную форму иммунодефицита͵ что и является главным фактором распространения ВИЧ-инфекции.

ВИЧ (вирус иммунодефицита человека) – единственная инфекция, которая не сопровождается иммунодефицитом, а вызывает его. ВИЧ инфицирует Т- лимфоциты – помощники (Th), главная роль которых в распознавании своих и чужих антигенов, без их сигнала антитела не начинают вырабатываться. После заражения клетки вирус непредсказуемо долго остается в ней малоактивным: не размножается и не разрушает зараженные клетки. Но такая клетка синтезирует некоторые вирусные белки, и, так как в данный период иммунная система работает еще нормально, эти вирусные белки распознаются как чужие антигены и на них вырабатываются антитела. По наличию в сыворотке крови антител и ставится диагноз на скрытое ВИЧ–носительство.

При активизации вируса зараженные клетки образуют множество новых вирусов. Οʜᴎ выходят из клетки, разрушая её, и тут же заражают и разрушает другие. Так как из-за массовой гибели Th иммунная система, перестает распознавать чужие антигены, прекращается выработка антител на всœе инфекции. Развивается СПИД, при котором человек заболевает множеством инфекционных заболеваний сразу, и его жизнь поддерживается только комплексом современных антибиотиков, сдерживающих размножение возбудителœей.

Передача ВИЧ происходит половым путем или при попадании вируса в кровь. При этом проникновение вируса в кровь не всœегда приводит к инфицированию. На 1999 год из 2003 человек (работников исследовательских учреждений, которым вирус в результате аварии гарантировано попадал в кровь), инфицированными оказались только 5 человек. Исследования показали, что инфицирование организма через кровь возможно в том случае, в случае если иммунная система в состоянии иммунодефицита. Это объясняет высокий процент заражения половым путем, т.к. половые пути максимально изолированы от действия продуктов иммунных реакций. Большой % заражения в медицинских учреждениях объясняется тем, что стресс в результате болезни, оперативное вмешательство, различные препараты подавляют иммунную систему. Широкое распространение ВИЧ среди наркоманов также объясняется иммунодефицитом, вызванным постоянным потреблением наркотиков.

Защита организма от проникновения ксенобиотиков - понятие и виды. Классификация и особенности категории "Защита организма от проникновения ксенобиотиков" 2017, 2018.


  • Вступление
  • Чужеродные соединения-ксенобиотики
  • Как организм защищается от ксенобиотиков
  • Антиоксиданты

4. Заключение

Преподаватель ОБЖ

Ковалев Александр Прокофьевич

СОШ № 2

г. Моздок


Человек живёт в окружении разнообразных химических веществ, многие из которых относят к группе ксенобиотиков-чужеродных соединений.

Чужеродное соединение - это вещества, которое организм не может использовать ни для производства энергии, ни для построения каких-либо своих частей.

Чужеродные химические вещества являются ядовитыми или отравляющими, имеют различное происхождение.

Многие из них природные, но более 7 млн. веществ созданы человеком искусственным путём; пестициды, препараты бытовой химии, лекарственные средства, промышленные отходы.

Отравляют планету многие вещества - и органические и неорганические, 12 металлов: бериллий, алюминий, хром, селен, серебро, кадмий, олово, сурьма, барий, ртуть, таллий, свинец- токсичны во всех своих соединениях.

Особую угрозу жизни и здоровью человека представляют три металла-свинец, кадмий, ртуть.


Каждое из новых химических веществ может стать причиной отравления или химической болезни.

Токсины, попадающие в организм человека с водой, воздухом, пищей, могут вызвать химическую травму, которая всегда сопровождается поражением психики : так реагируют на вредные вещества нервные клетки-наиболее уязвимые в организме.

Токсины могут вызвать и более серьёзные последствия-смертельные отравления , а в ряде случаев их действие проявится через годы в виде тех или иных заболеваний.

Причиной химического отравления могут стать многие вещества, с которыми мы сталкиваемся в быту, к примеру: лекарства, если превышать назначенную врачом дозировку, использовать препараты с истёкшим сроком годности.

Другой источник-товары бытовой химии: краски, лаки, клей, стиральные порошки, отбеливатели, пятновыводи-тели, средства для борьбы с насекомыми.

В нашей стране они являются виновниками более миллиона случаев отравления в год.


Сегодня в табачном дыме найдено более 400 вредных для здоровья.

Прежде всего это радиоактивный полоний-210 и канцерогенные смолы, вызывающие раковые заболевания большинства внутренних органов.

Кроме того, табак-растение, в наибольшей степени аккумулирует соли кадмия из почвы.

Аэрозоль оксида кадмия поступает в альвеолы лёгких с табачным дымом и вместе с упомянутыми выше веществами способствует возникновению рака лёгких.

Усвоение (всасывание в кровь) кадмия из воздуха составляет 80%.

По этой причине содержание кадмия в организме пассивных курильщиков лишь немногим меньше, чем у активных.

Помимо названных веществ в табачном дыме содержатся такие обще известные яды, как синильная кислота, мышьяк, угарный газ, необратимо связывающийся с гемоглобином крови.

По оценкам ВОЗ курильщики теряют в среднем 22 года нормальной жизни.



В организме человека и животных есть различные механизмы защиты от ксенонобиотиков. Главные из них:

1. Это системы барьеров, препятствующих проникновению ксенобиотиков во внутреннюю среду организма, а также защищающих особо важные органы (мозг и др.) от тех, " чужаков", которые все же прорвались в организм.

2. Это особые транспортные механизмы для выведения ксенобиотиков из организма. Наиболее мощная из них находится в почках

3. Это ферментные системы, главные из которые находятся в печени и превращают ксенобиотики в соединения менее токсичные и легче удаляемые из организма.

4. Это тканевые депо, где как бы под арестом могут накапливаться некоторые ксенобиотики.

Барьеры - это кожа, эпителий, выстилающий внутреннюю поверхность желудочно-кишечного тракта и дыхательных путей. Образованы эти барьеры одно- или многослойными пластами клеток.


Однако некоторые вещества могут преодолеть эти барьеры.

Если же ксенобиотики прорвались в кровь, то там их встретят гистогематические барьеры, расположен-ные между тканью и кровью.

Но и гистогематические барьеры не всегда непреодолимы для ксенобиотиков - ведь снотворное и некоторые лекарства действуют на нервные клетки, а значит, они барьер проходят.

Некоторые ксенобиотики могут повреждать клетки, образующие гистогематические барьеры, делая их легко проникаемыми.

Транспортные системы обнаружены во многих органах. Наиболее мощные находятся в клетках печени и почечных канальцах.

В органах, защищенных гистогематическим барьером, имеются особые образования, откачивающие ксенобиотики в кровь из тканевой жидкости


Ферментные системы превращают ксенобиотики в менее ядовитые соединения, которые легче поддаются выводу из организма.

Для этого используют ферменты, катализирующие или разрыв какой-либо химической связи в молекуле ксенобиотика, или наоборот, соединение его с молекулами других веществ.

Чаще всего в итоге получается органическая кислота, которая легко удаляется из организма.

Наиболее мощные ферментные системы находятся в клетках печени.

Депо ксенобиотиков - место избирательного накапливания некоторых вредных веществ.

На всем протяжении эволюции животных и человека главными воротами проникновения в организм чужеродных веществ оставался желудочно-кишечный тракт. Сформировались и соответствующие механизмы обезвреживания проникающих из кишечника в кровь ксенобиотиков: Защитную функцию "взяла" на себя печень


Этот мощный "химический завод" обеспечивал сохранение постоянства внутренней среды организма.

Теперь положение коренным образом изменилось из-за значительного и разнообразного загрязнения окружающей среды.

По этой причине организм человека значительно более чувствителен при проникновении в него токсических веществ как через легкие, так и через желудочно-кишечный тракт.

Проникновение различных вредных веществ повышенной концентрации через органы дыхания, менее защищенные, чем желудочно-кишечный тракт, в наши дни привело к существенному изменению состояния организма.

Развилась патологическая повышенная чувствительность организма.

Ощутимыми темпами происходит накопление наследственных пороков.


Широкое распространение получили: хронический бронхит, и редкие прежде формы легочной патологии, такие как аллергическое воспаление альвеол (болезни птицевода, табаковода, "легкое фермера" и др.) .

Увеличилось число больных бронхиальной астмой, наиболее тяжелое проявление аллергии.

Особую тревогу вызывает увеличение количества больных раком легкого.

Спиртные напитки известны издавна. Предполагается, что приём спиртного был приурочен нашими предками к таким событиям, как праздник полнолуния, удачная охота, и символизировал психическое родство, «единство крови».

Человек долгое время не переступал опасной черты употребления алкоголя, однако сегодня алкоголизм стал одной из самых серьёзных проблем.



Антиоксидантами называют вещества, которые препятствуют окислению или реакциям, которые активизируются, кислородом, перекисями, радикалами , то есть защищают мембраны клеток.

Большинство витаминов являются антиоксидантами . Так как нагрузка на организм ксенобиотиками за последние десятилетия резко возросла– расход витаминов и других антиоксидантов резко увеличился, и поэтому того количества, которое поступает с обычным рационом все больше не хватает.

Для выведения из организма множества химических веществ и тяжелых металлов целесообразно принимать сорбенты: хитозан, клетчатку, пектины.

Прежде чем вводить в себя ксенобиотики, в том числе называемые лекарствами, думайте.

Взвешивайте инь: ян, польза: риск осложнений.

Помните! Чтобы продлить жизнь – достаточно не укорачивать её!


Какой бы совершенной ни была медицина, она не может избавить каждого от всех болезней. Человек - сам творец своего здоровья, за которое надо бороться.

С раннего возраста необходимо вести активный образ жизни, закаливаться, заниматься физкультурой и спортом, соблюдать правила личной гигиены, - словом, добиваться разумными путями подлинной гармонии здоровья

Здоровый образ жизни - это образ жизни, основанный на принципах нравственности, рационально организованный, активный, трудовой, закаливающий и, в то же время, защищающий от неблагоприятных воздействий окружающей среды, позволяющий до глубокой старости сохранять нравственное, психическое и физическое здоровье

Домашнее задание § 3.1 стр.18-24

Ксенобиотики – общее название всех чужеродных для организма веществ неживой природы. Система защиты, имеет 3 основных уровня:

1) барьерный – кожные покровы, особенности строения верхних дыхательных путей, избирательная проницаемость клеток эпителия, выстилающих внутреннюю поверхность путей организма;

2) ферментный – ферменты клеток различных тканей, ферменты пищеварительного тракта могут трансформировать проникшие в организм ксенобиотики в соединения типа органических оснований или органических кислот;

3) Транспортный – представлен специальными клетками различных тканей, имеющими в своей структуре белок переносчик. Он способен связываться с органическими основаниями или кислотами и переносить их внутрь клетки или из неё. По конвееру таких клеток трансформируемые ферментами ксенобиотики выносятся в кровь и присоединяются к эритроцитам. Эритроциты несут их в печень и там от них освобождаются.

Система защиты сформировалась в ходе биологической эволюции животных и человека за миллионы лет и высоко эффективна по отношению к природным ксенобиотикам. Развитие производства привело к накоплению и появлению в среде новых химических веществ, которые преодолевают барьеры организма. Многие, благодаря своим химическим свойствам, разрушают их, создавая условия для проникновения природных ксенобиотиков и открывая новые ворота для инфекций, что повышает возможности развития инфекций и аллергических заболеваний. Ферментная система организма ограничена наследственной информацией и поэтому в ее состав не входят ферменты, способные трансформировать большинство производственных ксенобиотиков. Транспортная система изначально способна к выведению из организма только определенных групп химических соединений и тесно связана с эффективностью ферментной системы. Поэтому многие современные ксенобиотики проникают во внутреннюю среду организма, не выводятся из него и накапливаются в определенных тканях, называемых депо (чаще всего жировая ткань). Проникновение ксенобиотиков в организм может привести к острому или хроническому отравлению, спровоцировать концерогенез, аллергию, повышать частоту мутаций.

12.7 Система контроля индивидуальности и целостности организма (Иммунная система)

Как известно, наследственная информация организма сводится к иформации о структуре его белков, т. е. все белки организма синтезируются на основе его индивидуальной информации. Система контроля индивидуальности и целостности организма называется иммунной системой. Реакции иммунной системы, направленные на распознавание, нейтрализацию и выведение из организма чужеродных белковых соединений, называются иммунитетом. Способность вызывать иммунные реакции при проникновении в организм называется иммуногенность. Иммуногенностью обладают только белки, их соединения и крупные углеводы. Однако при попадании в организм химического комплекса не иммуногенного вещества, например лекарственного препарата с белком, иммунная реакция тоже будет развиваться, причем продукты этой реакции будут взаимодействовать и со всем комплексом, и только с белком, и только с не иммунногенным веществом, входящим в комплекс. Т. е., если в силу случайных обстоятельств или неправильного применения лекарств образуется его комплекс с собственным или любым другим белком, то через некоторое время продукты иммунных реакций организма будут вырабатываться и при поступлении только лекарства. Таким образом, развивается иммунная (аллергическая) реакция на любые не иммуногенные вещества. Белковые соединения, вызывающие при проникновении в организм иммунные реакции и способные взаимодействовать с продуктами этих реакций, называются антигенами.


Иммунные реакции делят на 2 группы:

Неспецифические - это такие реакции, продукты которых постоянно вырабатываются в организме, постоянно присутствуют в нем и способны нейтрализовать большие группы возможных антигенов. В первую очередь к ним относят фагоциты - клетки иммунной системы, циркулирующие в крови или присутствующие в разных органах, способные поглощать частицы антигенов, переваривать их, расщепляя на безвредные вещества, выводимые из организма. К неспецифическим продуктам иммунной системы относится комплемент . Комплемент - это система ферментов в сыворотке крови, которая расщепляет чужеродные растворимые антигены. Возможности и фагоцитоза, и комплемента ограничены, т.к. они нейтрализуют только антигены, обладающие определенными общими свойствами. Например, наличие в химической структуре определенной химической группы. Антигены, не имеющие этих общих свойств, продуктами неспецифических реакций нейтрализоваться не будут.

Специфические иммунные реакции - это такие реакции, продукты которых вырабатываются только в ответ на проникновение антигена и могут взаимодействовать только с этим антигеном. Основным продуктом специфических иммунных реакций являются антитела (At) или иммуноглоблины (Ig). Иммуноглобулины – это белки сыворотки крови, вырабатываемые клетками иммунной системы в ответ на проникновение антигена, в молекуле которых есть участок, способный взаимодействовать только с этим антигеном. При взаимодействии иммуноглобулина с антигеном образуется комплекс – «антиген-антитело», который может:

а) прикрепляться к эритроцитам и вместе с ними, поступая в печень, затем выводиться из организма;

б) разрушаться фагоцитами или комплементом вне зависимости от исходных свойств антигена;

В зависимости от формы нейтрализации антигена иммуноглобулины делят на классы: IgA, IgM, IgG, IgE. Главное отличие специфических иммунных реакций от всех других защитных реакций организма состоит в том, что генетически запрограммированы не определенные продукты, нейтрализующие определенные антигены, а способность вырабатывать антитела в ответ на проникновение любого антигена, способные нейтрализовать только этот антиген. Благодаря этому возможности специфических иммунных реакций безграничны и обеспечивают защитную реакцию против любого вероятного ифекционного агента. Однако, поскольку развиваются они только после проникновения антигена в организм и их развитие требует времени, возбудитель инфекции успевает размножаться в организме, разрушая его, что приводит к заболеванию. Иногда скорость размножения и разрушительное действие возбудителя успевают сделать организм не жизнеспособным до полного развития защитных реакций. Однако после выздоровления в организме остаются клетки «иммунологической памяти», которые при вторичном проникновении того же антигена приведут к очень быстрому накоплению необходимых антител, и заболевания может не быть вообще или оно будет проходить в легкой форме.

Иммунодефициты – нарушения в работе иммунной системы, приводящие к недостатку или полному отсутствию продуктов тех или иных иммунных реакций.

Первичные иммунодефициты – обусловлены наследственностью. К ним относят несколько редких наследственных заболеваний и физиологический иммунодефицит новорожденных. Так как к моменту рождения формирование иммунной системы не завершено, количество антител вырабатываемых в организме ребенка до 13 лет в 1000-10 раз меньше чем у взрослого.

Вторичные иммунодефициты – развиваются в результате взаимодействия организма со средой. Основные причины:

1) любая травма вызывает временный иммунодефицит пропорциональной тяжести травмы.

2) психотропные вещества подавляющие центральную нервную систему. Любая операция под общим наркозом вызывает иммунодефицит на 2,5 месяца.

3) недостаточное белковое питание или нарушение белкового обмена веществ.

4) любой стресс.

6) компоненты выбросов транспорта и производства подавляют иммунные реакции.

Широкое распространение всех перечисленных факторов в среде обитания современного человека привело тому, что, по данным ВОЗ до 80% населения Земли постоянно или периодически имеет ту или иную форму иммунодефицита, что и является главным фактором распространения ВИЧ-инфекции.

ВИЧ (вирус иммунодефицита человека) – единственная инфекция, которая не сопровождается иммунодефицитом, а вызывает его. ВИЧ инфицирует Т- лимфоциты – помощники (Th), главная роль которых в распознавании своих и чужих антигенов, без их сигнала антитела не начинают вырабатываться. После заражения клетки вирус непредсказуемо долго остается в ней малоактивным: не размножается и не разрушает зараженные клетки. Но такая клетка синтезирует некоторые вирусные белки, и, так как в этот период иммунная система работает еще нормально, эти вирусные белки распознаются как чужие антигены и на них вырабатываются антитела. По наличию в сыворотке крови антител и ставится диагноз на скрытое ВИЧ–носительство.

При активизации вируса зараженные клетки образуют множество новых вирусов. Они выходят из клетки, разрушая её, и тут же заражают и разрушает другие. Так как из-за массовой гибели Th иммунная система, перестает распознавать чужие антигены, прекращается выработка антител на все инфекции. Развивается СПИД, при котором человек заболевает множеством инфекционных заболеваний сразу, и его жизнь поддерживается только комплексом современных антибиотиков, сдерживающих размножение возбудителей.

Передача ВИЧ происходит половым путем или при попадании вируса в кровь. Однако проникновение вируса в кровь не всегда приводит к инфицированию. На 1999 год из 2003 человек (работников исследовательских учреждений, которым вирус в результате аварии гарантировано попадал в кровь), инфицированными оказались только 5 человек. Исследования показали, что инфицирование организма через кровь возможно в том случае, если иммунная система в состоянии иммунодефицита. Это объясняет высокий процент заражения половым путем, т.к. половые пути максимально изолированы от действия продуктов иммунных реакций. Большой % заражения в медицинских учреждениях объясняется тем, что стресс в результате болезни, оперативное вмешательство, различные препараты подавляют иммунную систему. Широкое распространение ВИЧ среди наркоманов также объясняется иммунодефицитом, вызванным постоянным потреблением наркотиков.