Оцифровка карт. Оцифровка картографического материала

План местности, отображенный на топографических картах и прочих картографических материалах, постоянно меняется. Прокладываются новые дороги, возводятся или подвергаются сносу различные объекты. Все это требует внесения изменений в кадастровую и картографическую документацию. Карты , выполненные на бумаге, очень сложно редактировать. Поэтому выполняется оцифровка карт – перевод их в электронный (векторный) формат.

Оцифровка может быть выполнена для любого вида картографического материала: чертежей и планшетов, растровых изображений и т.п. При этом в карты вносятся все необходимые изменения, заказанные клиентом. Выполняется оцифровка карт с использованием новейших компьютерных программ и методик, позволяющих наиболее точно и качественно обработать цифровой материал.

Оцифровка карт с бумажных носителей является наиболее востребованной услугой. Она выполняется в виде первоначального их сканирования, с последующим растрово-векторным преобразованием (векторизацией). Это означает, что бумажные топографические и прочие карты переводятся в электронный вид с использованием компьютерных программ AutoCAD (Автокад) , Компас, Нанокад, CorelDRAW. Оцифровка производится полностью вручную специалистами без использования автоматических векторных программ, что исключает наличие ошибок.

Наша компания предлагает следующие виды услуг:

Оцифровка топографических карт и планов посредством программы AutoCAD (Автокад).

Векторизация карт любой степени сложности с использованием программы КОМПАС.

Преобразование отсканированного изображения местности в вектор программой CorelDRAW.

Все работы выполняются оперативно и качественно. Это гарантировано уже тем, что специалисты нашей компании являются профессионалами, имеющими высшее образование. Векторизацию и оцифровку они выполняют только вручную, без использования автоматических векторных преобразователей растра. Оцифровка карт осуществляется в соответствии с требованиями нормативных актов и правовых документов, с учетом необходимых условных обозначений и классификаторов. Каждый выполненный тип линии – определенной толщины, в полном соответствии с ГОСТ.

Оцифровка карт может быть заказана на нашем сайте с помощью формы быстрого заказа. Карты , которым требуется векторизация, должны быть отсканированы и отправлены на адрес нашей электронной почты [email protected]. Картографические материалы к оцифровке мы принимаем также в формате пдф (pdf). Стоимость векторизации карт рассчитывается индивидуально после получения задания. Со способами оплаты вы можете ознакомиться в разделе .

Еще лет пять-десять тому назад карты, планы, чертежи – выполнялись с использованием линеек, карандашей и ластиков. Иной, чем бумажный, формат любых графических документов вообразить было трудно. Но технический прогресс не стоит на месте, и сегодня представить геодезиста, который вычерчивает топографические карты вручную – просто невозможно. На смену неприхотливым чертежным приспособлениям пришло новое высокотехнологическое оборудование, оснащенное специальным программным обеспечение. С его помощью осуществляется составление новых и оцифровка старых топографических карт, которые хранятся до сих пор в виде бумажных рулонов. В Москве и области оцифровка топографических карт выполняется сотрудниками компании ООО "Геотоп Инжиниринг".

Термин "оцифровка топографических карт" (или векторизация графических документов) обозначает собой перевод любой графической документации из бумажного варианта в цифровой, электронный вид. Оцифровка карт и чертежей особенно популярна в больших компаниях или предприятиях. Дело в том, что для хранения и работы с документацией в старом виде, приходится задействовать специально с этой целью несколько сотрудников достаточно высокой квалификации. Плюс к этому необходимо помещение для хранения всех документов, по сути своей – архив. Для того, чтобы разыскать требуемый материал, скажем семилетней давности, придется поднять сотни документов, и не факт, что необходимая карта или чертеж сохранились.

Оцифровка топографических карт значительно облегчает и упрощает работу с необходимыми современными и архивными документами. Отпадает необходимость в содержании штата сотрудников и помещения – оцифрованные (векторизованные) карты сохраняются в компьютере как обычные файлы. Если оцифрованная карта не является носителем секретной информации, сотрудник может скопировать ее и хранить в удобной для работы форме. Оцифрованные топографические карты легко редактируются; они достаточно просто восстанавливаются в случае утраты. При этом оцифрованные карты можно копировать бесконечно без потери качества копий.

Важный момент: оцифровка карт имеет и обратное действие: в случае необходимости создать бумажную копию – секундное дело. Оцифровка карт дает возможность мгновенно передавать их электронные варианты на e-mail любому адресату. В то же время хранение и безопасность оцифрованных карт осуществляется самыми современными способами и средствами защиты, что особо актуально для Москвы и области, с их большим количеством центральных офисов ведущих компаний.

Оцифровка карт дает еще одно неоспоримое преимущество: создание трехмерной модели местности, позволяющей увидеть нужный участок территории не плоским изображением, а как реальный рельеф местности. Причем оцифровка карт занимает сравнительно мало времени: от считанных часов до целого рабочего дня.

Однако не стоит считать, что оцифровка топографических карт сводится к обычному сканированию бумажной версии. Это сложный процесс, требующий от выполняющих его специалистов знания всех тонкостей работы и большого опыта. Наша компания, выполняет оцифровку карт даже в случае утраты части данных, которые невозможно восстановить при обычном копировании.

Рельеф суши:

1. Горизонтали, обрывы и др. элементы рельефа цифруются с учетом направления
оцифровки по правилу «большая высота - слева», т. е. слева по направлению оцифровки го
ризонтали находится горизонталь с большим значением высоты (рис. 8.18, а).

2. Горизонтали замыкаются на линиях оврагов, промоин, обрывов и др., и в местах их
соединений должны стоять совпадающие по координатам узлы (рис. 8.18, б).

Рис. 8.18. Правила цифрования горизонталей:
а - направление оцифровки;
б - замыкание горизонталей по объектам рельефа

3. При пересечении горизонталями объекта площадной гидрографии или площадных
объектов микроформ рельефа они прерываются на береговой линии или на контуре микро
формы (рис. 8.19). При этом координаты точки метрики горизонтали должны совпадать
с каждой точкой микроформы рельефа.

4. Овраги и промоины, выражающиеся в масштабе карты, описываются как площадные
объекты в направлении «против часовой стрелки».

5. Промоины, изображаемые в одну линию, описываются по осевой линии условного
знака (по правилу «сверху вниз»).

6. Бергштрихи являются условно-линейными объектами и описываются двумя точками.
При этом начальная точка находится на горизонтали (с формированием узловой точки).

7. Горизонтали должны быть обязательно согласованы с объектами гидрографии.

Р ека микроформа рельефа

Рис. 8.19. Правила цифрования горизонталей

Гидрография, грунты:

1. При создании площадных объектов гидрографической сети для отделения различ
ных по названиям рек необходимо использовать вспомогательные линии. Между разными
объектами: река - море, река - озеро, река - рукав и др. проводится прямая вспомогательная
линия,
отделяющая их друг от друга (рис. 8.20, а).

Если в моря (озера) впадают крупные реки, имеющие широкую дельту с большим ко
личеством проток, то граница, разделяющая соответствующие объекты, проходит по лома
ной линии, которая соединяет по касательной острова дельты и проводится дальше по крат
чайшему расстоянию к береговой линии (рис. 8.20, б).

Рис. 8.20. Правила цифрования гидрографии

2. При создании площадного слоя гидрографии необходимо дополнить его соедини
тельными линиями (линии фарватера) на тех участках, где линейный объект прерывается
площадным; для рек с параллельными берегами, не выраженными в масштабе карты, допол
нительно цифруется фарватер реки. Линия фарватера должна замыкаться на береговую ли
нию океана, моря или озера. Точно на пересечении линейных и площадных объектов ставят
ся узлы. По непроточным площадным объектам линии фарватера не проводятся (рис. 8.21).

3. Отметки глубин цифруются как точечные объекты. За место положения отметки
глубины принимается центр подписи.

4. Болота, солончаки цифруются в двух слоях: сначала цифруются отдельные участки
болот по границе штриховки, а затем контуры, ограничивающие участки, принадлежащие
болоту (ориентировочным признаком может служить название, густота расположения
болот).

Рис. 8.21. Правила цифрования площадных объектов гидрографии

5. Если площадной объект гидрографии попадает, например, в покрытие болота, то
объект гидрографии копируется для получения совпадающих границ (рис. 8.22).

Рис. 8.22. Правила цифрования площадных объектов гидрографии:

а - совмещенные слои гидрографии и болота; б - отдельный слой болот

6. Урезы воды цифруются точно на береговой линии гидрографического объекта.

7. Линейные объекты: броды, перевозы, паромы, пристани, якорные стоянки, молы,
причалы и т. д. цифруются с формированием узлов по береговой линии площадного объекта
гидрографии.

Населенные пункты:

1. Для населенных пунктов, имеющих квартальную (рядовую) застройку, границей
является линия, оконтуривающая все кварталы данного населенного пункта, улицы, выходя
щие за пределы кварталов, отдельные здания (строения), территориально входящие в состав
населенного пункта. Контур должен отстоять от квартала на минимальном расстоянии
(рис. 8.23).

2. Для населенных пунктов с бессистемной или рассредоточенной застройкой грани
цей является линия, которая проводится через крайние строения.

3. Промышленные объекты, попавшие внутрь контура населенного пункта или кварта
ла (кладбище, стадион и др.), должны повторно находиться в слое социально-культурных
объектов.

Рис. 8.23. Правила цифрования населенных пунктов:

а - сведенные контуры населенных пунктов, кварталов и дорог;
б - слой контуров населенных пунктов; в - слой кварталов

4. Отдельные строения цифруются как точечные объекты.

Дороги и дорожные сооружения:

1. Начальными (конечными) точками объектов дорожной сети являются:

Точки, где меняется их характеристика (класса или материала покрытия - для автомо
бильных дорог; количества путей или вида тяги - для железных дорог);

Начальные (конечные) точки изображения дорог (места разработок полезных иско
паемых, морские переправы, переправы через реки с площадным характером локализации
и т. п.).

В начальных (конечных) точках объектов дорожной сети даются узловые точки.

2. Через населенные пункты, изображенные в виде пунсонов, дороги проводятся без
разрыва.

3. Если на дороге встречаются мосты, туннели, броды и др., то она показывается еди
ным объектом (не делится на отдельные объекты).

4. При примыкании дорог обязательно формируется общая точка.

5. Дороги в пределах населенных пунктов не описываются, если их изображение пре
рывается (между изображением дорог и улиц имеется разрыв). Отдельные участки дорог
в пределах населенных пунктов, изображенные условными знаками дорог, описываются со
ответствующими объектами (рис. 8.24).

Рис. 8.24. Правила цифрового описания дорог

6. Узловые точки формируются между дорогами, подходящими к населенным пунктам,
контуром населенного пункта и улицами. Если дороги переходят в улицы внутри населенно
го пункта, то узловые точки формируются между дорогами и контуром населенного пункта,
а также дорогами и улицами, являющимися их продолжением.

7. Через площадные объекты гидрографии дороги не прерываются при наличии линей
ного объекта моста. По береговым линиям в этом случае ставятся узлы, и участок дороги
между этими узлами копируется из слоя «мосты», но с сохранением кода дороги.

8. Транспортные сооружения (туннели, насыпи, выемки) цифруются с соблюдением
правила «большая высота - слева».

9. Точечный мост через линейную реку фиксируется узлом точно на пересечении доро
ги и реки.

10. Станции, платформы, остановочные пути и др. на дорогах фиксируются узлом в
месте их пересечения.

Растительный покров:

1. Узкие полосы леса, защитные лесонасаждения (объекты с линейным характером ло
кализации) задаются последовательностью координат точек осевой линии, проходящей через
геометрические центры условных знаков (лесополосы цифруются при наличии не менее трех
условных знаков). Лесополосы вдоль дорог и рек цифруются методом копирования соответ
ствующих участков дорог, рек или береговых линий.

2. Если участки растительности ограничены дорогами, реками и другими линейными
объектами, то они копируются по этим объектам.

Следует заметить, что здесь перечислены некоторые правила топологических отноше
ний между объектами. Топологическая корректность карты (т. е. выполнение требований,
предъявляемых по взаимосвязи объектов) - необходимое условие любой современной циф
ровой карты.

8.8. Устройства преобразования пространственной информации
в цифровую форму (сканеры)

Для преобразования пространственной информации в цифровую форму используют
сканеры (устройства для автоматического считывания графической и текстовой информа
ции). Раньше для этой цели использовали цифрователи - дигитайзеры (устройства с ручным
обводом и автоматической регистрацией координат) (рис. 8.25).

Рис. 8.25. Дигитайзер - устройство с ручным обводом и автоматической
регистрацией координат

Дигитайзер - это устройство планшетного типа, предназначенное для полуавтоматиче
ского ввода информации в цифровой форме. Состоит из электронного планшета и курсора.
Имеет собственную систему координат и при передвижении курсора по планшету координа
ты перекрестия его нитей передаются в компьютер. С его помощью на исходной карте про
слеживали и обводили объекты, а в память компьютера при этом поступали текущие коорди
наты этих контуров, линий или отдельных точек в цифровой форме. Сам процесс был очень
трудоемкий, так как объекты отслеживались вручную. Кроме того, возникало много ошибок
за счет обвода линий. В настоящее время дигитайзеры полностью заменены сканерами.

Сканеры являются автоматическими устройствами для ввода информации в цифровой
форме. Процесс перевода графической информации с твердого носителя в растровый фор
мат с помощью оптического устройства (сканера) называется сканированием.

Сама карта размещается на планшете или на барабане. Сканирование выполняется бы
стро и точно. Выбор типа сканера определяется типом исходного оригинала (его размер,
форма, цветовой охват) и требованиями к качеству полученного цифрового изображения.
В картографическом производстве могут применяться три типа сканеров: планшетные, бара
банные и протяжные.

1. Барабанные сканеры - это профессиональные высокоточные сканеры. Сканируемый
материал монтируется на поверхности прозрачного вращающегося барабана (рис. 8.27). Ска
нирующая головка имеет мощный источник света с фокусированным лучом и фоточувстви-
тельный элемент - фотоэлектронный умножитель (ФЭУ), которые перемещаются по направ
ляющим параллельно оси барабана. Отраженный световой поток попадает на ФЭУ через
прецизионную зеркальную призму. Накопленный ФЭУ заряд преобразуется в цифровое зна
чение аналого-цифровым преобразователем высокой разрядности. В единицу времени скани
руется одна точка на оригинале .

Существенным недостатком барабанных сканеров является то, что при сканировании
необходимо монтировать оригиналы на поверхность цилиндра, одновременно с этим учиты
вая ограничения на гибкость оригиналов. Сканеры барабанного типа используют в картоиз-
дании для сканирования оригиналов с очень высоким качеством. Используются для сканиро
вания государственных топографических карт масштабов от 1:25000 до 1:1000000.

2. Планшетные сканеры - оригиналы размещаются в горизонтальной плоскости. Мак
симальное разрешение планшетных сканеров на сегодняшний день порядка 5000 ф1. Такая
разрешающая способность позволяет увеличивать отсканированное изображение примерно
в 15 раз без видимой потери качества (рис. 8.26).

Рис. 8.26. Виды сканеров:

а - барабанный сканер; б - планшетный сканер

Преимуществами планшетных сканеров являются: возможность работы с оригиналами
на жесткой основе, удобство монтажа оригиналов в рабочей зоне сканера и сравнительно
низкая стоимость. Главным их недостатком является малый формат - необходимость сшивки
растровой основы из фрагментов.

Этот вид сканеров используются, когда необходимо отсканировать изображение не
большого формата с высокой точностью и качеством передачи цвета. Широко применяется
для сканирования топографических планов масштабов 1:500, 1:1000, 1:2000 и 1:5000.

3. Протяжные (ролевые сканеры) - имеют большой формат и достаточно большую
ширину сканируемой области (длина не ограничена). Разрешающая способность таких ска
неров может достигать 600 при глубине цвета 24 бит, это позволяет использовать рас
тровое изображение для полуавтоматической векторизации. Точность сканирования состав
ляет 0,1 % от длины оригинала.

Поэтому протяжные сканеры применяются в картографии для сканирования самых раз
нообразных оригиналов. В основном их используют, когда необходимо сканировать изо
бражение большого формата. Эти сканеры используют для сканирования тематических карт
общего применения, которые не требуют высокого качества сканирования.

Качество сканирования зависит от ряда факторов: типа и размера сканируемого ориги
нала, квалификации оператора, технологии сканирования, цифровой обработки оригинала
и др. Параметры сканирования: разрешение, яркость, насыщенность цвета и т. д. следует ус
танавливать перед самим процессом сканирования. Обработку растрового изображения мож
но производить в программе обработки растровой графики ЛёоЬе РЬо1озЬор.

В Surfer предусмотрена возможность снимать значения X иY координат в произвольных точках как построенных сеточных карт, так и импортированных извне растровых изображений. Этот процесс называетсяоцифровка (Digitizing ). Чаще всего её применяют для перевода в электронную форму старых отсканированных растровых карт. Импорт подобных карт для последующей оцифровки выполняется с помощью создания кар- ты-основы.

III.1. Создание карты-основы

Карта-основа позволяет изобразить в окне плот-документа информацию, которая не может быть представлена в виде сеточной карты. Чаще всего карта-основа представляет собой растровый рисунок, импортированный из внешнего графического файла. В подобном случае координаты этой карты – номер пикселя, считая от левого нижнего угла изображения. Карта-основа может быть скомбинирована с любым другим видом карт.

Для создания карты-основы требуется:

1. Создать новый плот-документ. Сохранить его под именем «Чёрное море.srf».

2. Выполнить команду Map/Base Map или щёлкнуть по кнопкена панели инструментовMap . Появится диалоговое окноOpen (рис. I.10). Выбрать графический файл «BlackSea.jpg».

3. Если щёлкнуть по кнопке , то в середине страницы, изображённой в окне плотдокумента, возникнет вновь созданная карта-основа, изображающая фрагмент карты гравитационного поля над Чёрным морем и прилегающими территориями (рис. III.1).

Картаоснова: гравитационное поле над Чёрным морем и прилегающими территориями

4. Дать название «Гравика» для карты-основы.

Рис. III.2. Окно дигитайзера после первого щелчка по оцифровываемой карте-основе

III. 2. Оцифровка карты-основы

Оцифровка карты-основы позволяет перевести её в электронную форму. Для этого потребуется:

1. Выделить карту «Гравика» с помощью однократного щелчка мышью.

2. Выполнить команду Map/Digitize . При этом указатель мыши поменяет вид на тонкий крестик. При перемещении указателя над картой в строке состояния будут показываться текущие координатыX иY карты.

3. Щёлкнуть левой кнопкой мыши по карте. Появится окно дигитайзера (рис. III.2). В этом окне автоматически будет добавлена строка со значениями координат X иY . Кроме того, на карте в месте, где был произведён щелчок, возникнет маленький (к сожалению, временный) крестик красного цвета.

4. Таким образом надо отследить всю оцифровываемую изолинию.

5. Сохранить результаты оцифровки каждой изолинии по отдельности. В окне дигитайзера выполнить команду File/Save As . Появится диалоговое окноSave As (Сохранить как ) (рис. I.8). В выпадающем спискеSave as Type (Тип файла )выбрать пункт Data Files (*.DAT) . Ввести имя файла в соответствии со значением (учитывая знак) оцифровываемой изолинии.

6. Закрыть окно дигитайзера и приступить к оцифровке следующей изолинии.

7. Для окончания процесса оцифровки нажать клавишу Esc.

Задание 17. Оцифровка растрового изображения

(Трудоёмкость 10)

1) Создать новый плот-документ «Чёрное море». Создать картуоснову из графического файла «BlackSea.jpg». Произвести оцифровку всех изолиний поля силы тяжести.

2) После прохождения очередной изолинии производить построение точечной карты на основе только что созданного файла с результатами оцифровки. В менеджере объектов давать имя каждой точечной карте в соответствии со значением оцифровываемой изолинии. Точечные карты включать в оверлей с картой-основой.

3) Произвести сборку в режиме рабочего листа всех результатов оцифровки в едином файле с добавлением третьего столбца – значения поля силы тяжести для каждой изолинии. Сохранить в файле «Сборка.dat».

4) Создать сеточный файл «Сборка.grd» по данным файла «Сборка.dat».

5) Построить контурную карту на основе сеточного файла «Сборка.grd». Сделать цвет контуров всех изолиний белым.

Подготовка карты и процесс оцифровки

Начинать оцифровку следует с сообщения программе соответствующей информации о проекции, системе координат и т.д. Это часть процесса подготовки карты, которым так часто пренебрегают, но который очень важен для создания пригодной базы данных. Многие программы потребуют от вас эту информацию перед тем, как вы сможете начать, хотя другие позволяют ввести эту информацию позже. В любом случае вам следует предварительно ее подготовить и держать под рукой, чтобы знать, какова она и где ее найти.

Неплохо было бы также перед началом оцифровки сделать соответствующие пометки прямо на карте или на прикрепленной прозрачной пленке для идентификации тех мест, которые вы собираетесь оцифровывать. Помните, на карте будет множество кривых линий, которые вам придется сводить к набору коротких прямых отрезков. Хотя многие предпочитают цифровать без подготовки, если вы знаете все точки, которые будут оцифровываться (какие из них являются начальными и конечными точками границ полигонов, какие - узлами и т.д.), то вам не придется повторять эту утомительную процедуру во время оцифровки.

Поскольку оцифровка - работа монотонная, вам, возможно, захочется выполнить ее за несколько этапов. Это тем более говорит в пользу подготовки карты заранее, отмечая на карте части, которые вы собираетесь вводить за каждую сессию. Правда, при этом вам скорее всего придется иногда снимать карту со стола дигитайзера, чтобы дать и другим возможность на нем поработать, поэтому придется сообщать программе, где на карте находится оцифровываемая часть. Для этого используютсяточки привязки, или регистрационные, координаты которых вводятся в пространстве как дигитайзера, так и карты. Их тоже нужно отметить на карте для того, чтобы и вы и компьютер знали, где они находятся. Точки привязки обозначают внешнюю границу карты и должны находиться снаружи любого объекта, который вы собираетесь оцифровывать, включая рамку карты, если вы собираетесь вводить ее в БД ГИС. Обычно программе требуются три точки по углам прямоугольника для определения области карты. Некоторые могут обойтись и двумя, если они расположены на диагонали. В этом случае программа считает, что внешняя граница является прямоугольником и вычисляет остальные два угла. Независимо от того, какой метод используется в вашем случае, для обеспечения хорошего качества работы совершенно необходимо точно указывать положения точек привязки. Неплохо даже перепроверить их, так как если они указаны неточно, вся дальнейшая оцифровка будет ошибочной.

Другие приготовления карты включают четкое определение порядка, в котором вы намереваетесь производить оцифровку. Неплохо бы также придумать метод идентификации уже оцифрованных областей (секций, линий, точек и т.д.). Периодические перерывы в оцифровке для пометки карты фломастером помогут вам отслеживать ваше продвижение и снимут напряжение процесса. Используемая вами программа может потребовать указания узлов, левых и правых областей и т.п. в зависимости от ее сложности и используемой модели графических данных. Эту информацию также следует нанести прямо на карту, чтобы не приходилось останавливаться слишком часто для выяснения этой информации.

Большинство программ оцифровки имеют возможность редактирования для устранения допущенных вами ошибок. Фактически, некоторые программные пакеты позволяют использовать для оцифровки свою подсистему редактирования, давая тем самым возможность редактирования во время оцифровки. Мы обсудим виды возможных ошибок и методы их устранения в следующей главе. Пока же отметим, что большинство программ оцифровки имеют способность компенсировать дрожание руки, определяемую величиной расстояния неразличимости точек. Ее введение вызвано тем, что вы, как правило, не можете поместить перекрестие курсора дигитайзера точно на одно и то же место дважды, что необходимо для установления идентичности начальной и конечной точек замкнутой линии. Люди обычно не обладают проворностью, достаточной для выполнения таких высокоточных движений и, конечно, свою играют роль ограничения самих дигитайзеров. Расстояние неразличимости точек может устанавливаться до начала оцифровки или в дальнейшем, во время редактирования. В любом случае для этого параметра вам нужно выбрать золотую середину между обеспечением достаточной точности оцифровки и несовершенством процедуры ввода. Слишком малая его величина делает оцифровку более чувствительной к ошибкам, что может привести к разнесенности точек, которые должны быть совмещены. И наоборот, слишком большое его значение может привести к слиянию раздельных точек и линий, поскольку программа решит, что их несовпадение - результат ошибки оператора. Мы поговорим об этом подробнее, когда будем рассматривать подсистему хранения и редактирования в следующей главе. Глава 6 дает и другие подсказки для повышения вероятности создания хорошего, свободного от ошибок продукта. Вдобавок, вы можете обратиться к специальной статье , посвященной всей системе оцифровки, особенно для организаций и коммерческих предприятий.

Последние приготовления карты имеют дело в основном со склонностью материала карты изменять свои размеры при изменении влажности и температуры. Стабильный материал, типа пластика, более устойчив в этом отношении, чем бумага. Хотя он также меняет размеры при изменении температуры, но все же гораздо меньше, чем бумага. Кроме того, он гораздо менее чувствителен к изменениям влажности. Хотя это свойство материала может показаться незначительным, посмотрите на большие бумажные постеры, прикрепленные к стене кнопками по краям. Поместив руку в центр постера, вы обнаружите значительный люфт бумаги. Весь постер может даже провиснуть на кнопках. Это обусловлено скорее всего не тем, что он был плохо подвешен, а тем, что материал расширился в результате перемен температуры и влажности, и под действием силы тяжести растянулся.

Существуют несколько способов ограничения количества ошибок оцифровки из-за нестабильности и хрупкости материала. Во-первых, помещение должно быть оборудовано устройствами поддержания стандартной невысокой температуры и низкого уровня влажности. Нужно дать картам, которые вы собираетесь оцифровывать, несколько часов пребывания в помещении, причем в развернутом состоянии (вообще-то, следует избегать использования складываемых карт, так как сгибы значительно снижают их точность). Для фиксации карты можно нанести полоски скотча вдоль ее краев, поверх которых будут прилепляться отрезки фиксирующего скотча. Нельзя использовать клей, и прилеплять фиксирующий скотч непосредственно к бумаге, что может привести к порыву карты или сдиранию изображения при ее смещении. Кроме того, они могут затруднить удаление карты со стола, создавая избыточное натяжение, которое может привести к ее необратимому растяжению. Карту следует размещать так, чтобы вам не приходилось сильно напрягаться для помещения курсора дигитайзера на нужные объекты, поскольку это может создать излишнее напряжение материала карты и ограничить свободу вашего перемещения, добавляя ошибок в создаваемую базу данных. При оцифровке в несколько сессий, храните карту в комнате с такими же климатическими условиями, дабы избежать ее деформации.

ЧТО ВВОДИТЬ

Теперь, после того, как мы получили некоторые основные наставления по оцифровке, особенно о том, как избегать ошибок в этом процессе, мы можем выбрать подходящие для ввода данные. Большинство книг и даже большинство руководств по программам проливают мало света на этот вопрос. Это похоже на начало путешествия, когда вам наказывают тщательно упаковать все оборудование, но не дают даже намека на то, что это за оборудование. Каждое путешествие в цифровой мир уникально, каждая среда требует разных покрытий и каждая потребность путешествия в геоинформатику требует отдельного набора критериев. Мы попытаемся с этим разобраться, чтобы получить простой набор инструкций, применимый в любых обстоятельствах.

Главным фактором, определяющим, что картографы помещают на карту и как ее создают, является целевая аудитория, пользователи. То же самое можно сказать и о создании БД ГИС. Исторически сложилось так, что во многие ГИС, включая и те, что создавались для целых штатов, вводилось всё . Как мы увидим в Главе 15, очень часто это приводило к неработоспособности системы. Поэтому правило номер один гласит: прежде всего определите, для чего вы создаете БД ГИС. Это по меньшей мере ограничит ввод данных темами, которые скорее всего будут использоваться. Хотя и впрямь замечательная карта геологии четвертичного периода кажется очень естественным материалом для ввода, во-первых потому, что она есть, а во-вторых потому, что она такого хорошего качества, скорее всего она вообще никому не понадобится в исследованиях загрязнения атмосферы, вызванного заводскими трубами. Из этого вы должны понять, что вводимые тематические покрытия должны быть прямо связаны с моделированием и анализом, которые вы намереваетесь выполнять, и результатами, которые намереваетесь получить. Если вам так уж хочется ввести карту четвертичной геологии, то лучше сохраните ее в отдельном файле или отложите для более позднего ввода, если он действительно понадобится.

Необходимость определения того, какие покрытия понадобятся в будущем, представляет собой некоторую проблему, особенно если вы или ваш заказчик имеете только зачаточные представления о том, что должно быть сделано. Полагаясь на авось, можно отлично провести время, но, скорее всего, ГИС, созданная при таких обстоятельствах, не даст полезных результатов без значительных переработок, поправок, улучшений и обходных приемов. А этот подход сегодня оказывается довольно дорогим. Возможно, единственным случаем, когда база данных может создаваться без четкого понимания предполагаемого результата (иногда называемого пространственно-информационным продуктом (spatial information product)), являются проекты, главная цель которых - определить возможные взаимосвязи между данными тематических покрытий для формулирования начальной научной гипотезы. Этот подход не приемлем для коммерческих проектов. Поэтому правило номер два, связанное с первым, требует как можно более точного определения целей перед выбором тематических покрытий.

Даже при очень конкретных целях и определенных пространственно-информационных продуктах в некоторых случаях могут быть несколько путей получения данных. Например, теперь координаты местоположений и отметки высоты могут быть получены с помощью GPS-приемников. Но они могут быть взяты и с существующих карт с достаточно высокой точностью. Или, данные о землепользовании могут быть получены из наземных исследований, аэрофотосъемки, со спутников, авиационных сканеров, из числа других источников. Нелегко ответить, какой следует Использовать. Но хотя нет рецепта успеха, зато есть рецепт провала. Что ведет нас к правилу третьему: избегайте использования данных из экзотических источников, когда имеются обычные, особенно если последние обеспечивают сходный уровень точности. Что такое "экзотические", вы определите сами для своего проекта. В общем, я бы использовал практическое определение, применяя данный термин по отношению к любым источникам данных, с которыми я не знаком. Если вы или другие члены вашего коллектива знакомы с данным набором информации и можете спокойно использовать его правильным образом, и если он повышает точность или полезность вашей БД, то его следует использовать. Если все ваши источники данных для определенной темы или покрытия имеются в традиционной форме, то вот правило четвертое: используйте наилучшие, наиболее точные данные, необходимые для вашей задачи.

Вам следует помнить, что "точность" в данной ситуации относится к необходимой, а не в принципе достижимой точности. Вам, наверное, не будет нужен одно-сантиметровый шаг изолиний рельефа, даже если такая карта существует; лучше использовать данные, которые наиболее близки к вашему уровню наблюдений. Хотя предельно детальная карта любого покрытия может выглядеть полезной, ее ввод обойдется дороже, анализ будет более медленным и, возможно, более трудным. Вот пример использования тематических (ТМ) данных разрешения 30 м со спутника LANDSAT по сравнению с многозональными (MSS) данными разрешения 80 м из того же источника. Допустим, вам нужно идентифицировать большие поля, засеянные зерновыми. Поскольку более высокое пространственное разрешение в первом случае, как известно, создает множество трудноразделимых категорий на одной территории, которая вся, по сути, -зерновые поля, более высокое разрешение скорее запутает вам дело, нежели упростит его. И конечно, вычислительные и людские ресурсы, необходимые для прояснения ситуации, повысят общую стоимость системы, не говоря уже о значительно различающейся стоимости исходных данных. Таким образом, мы получаем правило пятое: выбирайте адекватный уровень точности данных.

Еще один вопрос о том, что вводить, имеет некоторое отношение к последней теме об источниках данных. Большинство тематических карт (например, топографические карты USGS) содержат также информацию о дорогах и других антропогенных объектах, которые могут быть очень полезными для ввода в ГИС. Везде, где возможно, и где их качество приемлемо, вам следует вводить эти данные как отдельные покрытия с того же листа карты. Это - правило шестое. Это правило не запрещает использование других источников высокого качества или высокой точности, но оно дает два преимущества. Во-первых, поскольку данные находятся на одной карте, вам не придется иметь дело с несколькими листами и повторять все предварительные операции по подготовке карт. Во-вторых, поскольку данные находятся на одном листе, они уже географически привязаны, уменьшая потребность в выполнении этой иногда трудной задачи позднее.

Последнее правило, седьмое, гласит, что каждое покрытие должно быть как можно более специализированным. То есть покрытия должны быть как можно уже специализированы по темам, не полагаясь на системы вроде IMGRID. Чем более специализировано покрытие, тем легче выполнять поиск, если вы хотите узнать что-то, что относится к данным, содержащимся в одном покрытии. Кроме того, при выполнении операций наподобие наложения покрытий (см. Главу 13), легче отслеживать процесс, если вы хорошо знакомы с данными. Операции наложения упрощаются и для самого компьютера, если в заданном покрытии нет лишних данных.

Эти правила мы можем выразить несколькими короткими предложениями. Первое, определитесь с целью. Далее, удостоверьтесь, что карты соответствуют цели. Используйте наиболее точные для данной цели карты - не слишком точные для ваших нужд и не слишком неточные для выполнения работы. Делайте покрытия простыми и используйте ту же карту для получения этих простых покрытий всегда, когда это оправданно и возможно, дабы избежать необходимости совмещения. Прежде всего, подумайте о вашем проекте до того, как начать ввод данных. Ввод данных требует времени и денег.

КАК МНОГО ВВОДИТЬ

Вопрос о том, какой объем данных вводить, связан с типами вводимых данных. Опять же, используя нашу аналогию с реальным путешествием, скажем, что при подготовке вы должны знать, сколько еды взять, а не только каких видов. Если еды слишком много, вам придется тащить ненужный груз в течение всего путешествия. Если еды недостаточно, то вам придется закончить путешествие раньше, чтобы отправиться на поиски пищи. Подобно этому, если в ГИС введено слишком много данных, ей придется нести груз этого избытка на протяжении времени жизни проекта, если же данных недостаточно, то вы можете оказаться неспособны ответить на вопросы, которые планировали выяснять.

Как и при подготовке путешествия, ввод данных в компьютер - это процесс выбора. В векторной ГИС каждая линия, которую вы вводите, наверняка будет иметь некоторую кривизну. Для того чтобы сделать достаточно точную копию с помощью прямых отрезков, вам придется тысячи раз решать, где поместить курсор дигитайзера. Этот процесс похож на генерализацию (упрощение) линий, с которой мы столкнулись ранее при рассмотрении картографии. Простое правило гласит, что нужно записывать больше точек для более сложных объектов, чем для простых (Рисунок 5.5).

Положение прямой линии может быть точно определено всего лишь двумя точками. Но мне приходилось встречать проекты, где границы правильных квадратов состояли из ни много, ни мало двух тысяч сегментов. Это не только загромождает компьютер мегабайтами ненужной информации и замедляет вычисления, но и делает маловероятным то, что прямые линии будут выглядеть действительно прямыми при выводе.

Рисунок 5.5. Оцифровка сложной линии. Пример аппроксимации прямыми отрезками при дискретизации кривой линии. Записываемые точки выбираются в зависимости от изменения направления линии. Каждая точка - дополнительная порция информации, содержащейся на карте.

Сложность линий и многоугольников можно сравнить с количеством информации, характеристикой, рассматриваемой в теории информации . Чем чаще линия меняет направление, тем больше информации она содержит (то же относится к поверхностям, но это мы обсудим позже). И чем плотнее расположены точки, линии и области, тем больший объем информации содержит карта. А чем выше объем информации, тем чаще требуется брать отсчеты при оцифровке. Это тем более говорит в пользу Тщательной подготовки карты. Вы должны также помнить, что для каждого объекта, вводимого в ГИС, будет вводиться и атрибутивная информация, и что существует прямая зависимость между сложностью карты, или объемом информации в ней, и проблемами хранения" и обработки пространственных данных .

Идея с количеством информации может быть применена и к растровым данным. Опять же, общее правило таково: чем мельче объекты, которые должны распознаваться в вашей системе, тем мельче должны быть ячейки растра . Этот принцип часто определяет выбор размера ячеек (разрешение) всей базы данных. Конечно же, теория информация может быть применена и ко вводу растровых данных. Допустим, вы хотите использовать растр для представления ферм, отображенных на карте. Если наименьшая ферма занимает 40 га, то пикселы должны быть по меньшей мере вчетверо меньшей площади (вдвое по длине стороны), чтобы гарантировать обнаружение этой фермы в вашей ГИС. Иначе говоря, это значит, что ячейки растра должны быть по 10 га или мельче, чтобы обеспечить представление объектов площадью 40 га. Но если поле растянуто вдоль береговой линии? Хотя его площадь составляет 40 га, оно вытянуто как линейный объект, уменьшая шансы того, что все оно будет введено в вашу ГИС. Эта сторона процесса определяется в некоторой степени методом, с помощью которого вы вводите ячейки растра. Подробно мы рассмотрим это в дальнейшем, а пока отметим то же практическое правило: делайте больше отсчетов при большем объеме информации.

Как для растра, так и для векторов, требуемая точность зависит от площади, покрываемой картой и назначением вводимых данных. Карты мелкого масштаба, покрывающие большие площади земли, содержат гораздо более общий вид земной поверхности. Кроме того, линии и символы, расположенные на карте, сами занимают некоторую площадь. Величина ошибки, заключенной в символе, зависит от масштаба карты, на которой он помещен. Линии на мелкомасштабных картах занимают больше площади земли, чем линии того же размера на крупномасштабных картах. Это физическое условие, называемое масштабно-зависимой ошибкой, говорит о том, что величина ошибки напрямую связана с масштабом карты и должна учитываться при подготовке карты перед оцифровкой.