Гладкая мускулатура, ее специфика и влияние на жизнедеятельность человека. Гладкомышечная клетка Гладкомышечные органы человека

В этой статье описано строение и функции гладкой и поперечно-полосатой мышечной ткани.

В теле любого мужчины или женщины существует несколько видов тканей мышц. Мышечные ткани различаются по строению и происхождению. В этой статье мы рассмотрим их свойства, функции и признаки.

Какие типы мышечной ткани встречаются в организме человека?

В нашем организме встречаются следующие типы мышечных тканей:

  • Гладкая
  • Скелетная
  • Сердечная

Гладкая мышечная ткань есть в составе кожи, стенках наших органов и сосудов, по которым течет кровь. Ее сократительная способность выполняется непроизвольно и достаточно медленно. В отличие от иных, данный вид мышц потребляет малое количество энергии и довольно долго не утомляется.

Поперечно-полосатая скелетная мышечная ткань есть в строении пищевода, в глоточной структуре и в скелете. Контролирование производится человеческим мозгом. У этих мышц высокая сократительная скорость. Данный вид ткани требует много энергии и длительное время на отдых.

Поперечно-полосатая сердечная мышечная ткань является составной частью сердца, осуществляет насосную функцию с помощью клеточных контактов, которые мгновенно передают друг другу импульс, от чего сокращение происходит синхронно. Управляется непроизвольно, способна к автоматизму.

Особенности строения гладкой мышечной ткани человека: свойства, какие клетки, волокна образуют?



Все виды мышечных тканей отличаются пор структуре и происхождению, но одинаково хорошо сокращаются. В их составе имеют миоциты - это клетки, которые принимают импульсы и отвечают сокращением. Особенности строения гладкой мышечной ткани человека заключаются в наличии мелких веретеновидных клеток.

Все мышцы человеческого организма представлены всего 3 видами:

  • Гладкие
  • Поперечно-полосатые скелетные
  • Поперечно-полосатые сердечные

Вот какие клетки, волокна образуют гладкую мускулатуру:

  • Строение этого вида мускул состоит из гладкого миоцита.
  • В составе таких клеток есть ядро и тончайшие мио-фибриллы.
  • Цитолемма гладких мускул образует множественные впячивания в виде мелких пузырьков - кавеолы.
  • Клеточки гладких мускулов соединены в пучки из 10-12 штук .
  • Такая особенность получается благодаря иннервации гладких мышц и это помогает лучше и быстрее проходить импульсу по всей группе клеток.

Свойства и функциональность гладких мускул заключаются в следующем:

  • Возбудимость, сократимость, эластичность. Сокращение регулируется при помощи нервной системы.
  • Выполнение стабильного давления в органах с полой структурой.
  • Регулирование показателей уровня давления крови.
  • Перистальтика органов пищеварения и беспрепятственное передвижение по ним содержимого.
  • Опорожнение мочевого пузыря.

Многие органы в нашем организме не смогли бы функционировать, если они бы не состояли из гладкой мышечной ткани.

Строение поперечно-полосатой скелетной мышечной ткани человека: функции, признаки



Скелетная мышечная ткань – тугая, эластичная ткань, которая сокращается под действием нервных импульсов. Она состоит из скелетной мускулатуры, как у людей, так и у животных. Ее работа заключается, например, в сокращении голосовых связок, выполнении дыхания, а также движении тела.

Как говорилось выше, у людей различают несколько видов мышц:

  • Поперечнополосатая сердечная мышца
  • Поперечнополосатые скелетные мышцы
  • Гладкие мышцы

Строение поперечно-полосатых скелетных мускул человека особенное и заключается в таких главных аспектах:

  • Состоит из мио-цитов, по длине которые равны несколько сантиметров.
  • Диаметр этих клеток-миоцитов от 50 до 100 мкм .
  • Такие клетки имеют множество ядер - до 100 .
  • Если рассматривать под микроскопом, то можно увидеть темные и светлые полоски.
  • Волокнистые нити имеют длину до 12 см .

Также стоит отметить следующее:

  • Скелетные мускулы представляют собой активный тканевый отрезок, необходимых для поддержания опорно-двигательного аппарата, состоящего из костей, их сочленений, сухожилий, связок.
  • К двигательному аппарату относят также моторные нейроны, которые посылают нервные «сигналы» к волокнам мышц.
  • Тела моторных нейронов размещаются спереди, в специальных ответвлениях спинно-мозговом отделе, а иннервирующие мускулы челюстно-лицевой области - в ядрах ствола мозга. Когда нейрон заходит в скелетную мышечную клетку, то он раздваивается, и создает нервно-мышечный синапс на каждом волокнистом отрезке.

Функции скелетных мышц:

  • Держание положения фигуры
  • Движение фигуры в пространстве
  • Передвижение отдельных элементов человеческой фигуры относительно друг друга
  • Выполнение дыхательных движений

Скелетные мышцы вместе со скелетом образуют опорно-двигательную систему организма, которая помогает человеку держать позы и выполнять передвижение. Скелетные мускулы и скелет совершают защитную функцию, оберегая наше сердце, желудок, печень, почти и другие органы от ушибов.

Из чего состоит мышечная ткань сердца, языка, желудка человека?



Структурная единичка ткани сердца – кардиомиоцит. Из чего же она состоит? Вот ответ:

  • Кардиомиоцит - это клеточка в форме в виде прямоугольника.
  • Миоциты расположены друг за другом столбиками и, совместно со вставочными дисками, образуют проводящую систему сердца.
  • Вставочные диски по своей структуре являются участками плазмалеммы соседних 2-х клеток.
  • Волокна, пролегающие рядом, имеют соединение в виде анастомоз, которые обеспечивают синхронность сокращения.
  • Еще одной особенностью является большое кол-во митохондрий, что позволяет сердцу непрерывно работать и почти не подвергаться усталости.
  • Сократительная способность такого типа мускул не зависит от воли нашего тела. Их деятельность зависит от импульсов ритма проводящей систематизации сердца.

Мускульная ткань языка и желудка человека: какая она? Вот ответ:

  • Язык и желудок человека представлены поперечно-полосатым скелетным типом мускул.
  • Эта ткань состоит из многоядерных волокон цилиндрической формы, которые, располагаясь параллельно, образуют светлые и темные участки (так называемые диски и полоски).
  • Диаметр образующих волокон 100 мкм, а длина – от 1000 до 40000 мкм.

Сокращение этих мышц является произвольным. Их иннервация происходит при участии спинномозговых и черепных нервов.

Какие органы человека образованы гладкой и поперечно-полосатой мышечной тканью?



Главная функция любой мышечной ткани - это способность к изменению формы, длины волокон, то есть к сокращению при возбуждении. Какие органы образованы гладкой и поперечно-полосатой мышечной тканью? Вот ответ:

В большинстве внутренних органов в составе имеется гладкомышечная ткань:

  • Мочевой пузырь
  • Желудок, кишечник
  • Сосудистые стенки
  • Матке и других внутренних органах

Длина гладких мышц достигает 500 микрон и содержит одно ядро – миоциты веретеновидной формы. Она непроизвольна и малоподвижна, медленно сжимается и расслабляется.

Поперечно – полосатая мышечная ткань является частью:

  • Сердечно-сосудистой мышцы
  • Глоточного отдела
  • Пищеводного отдела
  • Языка
  • Глазных мышц

Это основа скелетных мускул, так как подобная мышечная ткань представляет собой многоядерную структуру. К примеру, сердечная мышца состоит из 1-2-х ядер , скелетная содержат до 100 ядер . Она обладает повышенной скоростью при сжимании и расслаблении. Волокнистые нити скелетных мышц в длину большие - до двенадцати сантиметров.

В какой форме существует, как выглядит поперечно-полосатая и гладкая мышечная ткань человека?



Поперечно полосатая мышечная ткань расположена на кости скелета человека и благодаря тому что она сокращается, она приводит в движение тело человека и суставы. Ее миофибриллы образуют поперечную исчерченность.

В какой форме существует, как выглядит поперечно-полосатая мышечная ткань человека? Вот ответ:

  • Она включает в свой состав многочисленные клеточки, которые имеют вытянутость в длину.
  • Благодаря ей человек может выполнять разные двигательные упражнения.
  • Поперечно-полосатая мышечная ткань делится на скелетную и сердечную.

Гладкие мышечные мускулы:

  • Ее главная функция - это сокращение, благодаря чему происходит двигательный процесс в нашем теле.
  • На этом виде ткани не прослеживается поперечные полоски.
  • Эта ткань есть в стенозной ткани любого внутреннего органа. Состоит из клеточных миоцитов, которые имеют разный вид.
  • Длина этой клеточки от 20 до 500 мкм, а внутри нее расположено ядро.

Миоциты могут иметь такую форму:

  • Овальную
  • Округлую
  • Отростчатую
  • Веретеновидную

Ярким выражением возбудимости тканей организма считается – их сокращение, то есть изменение длины, которая наблюдается в мышечных тканях.

Отличия гладкой и поперечно-полосатой мышечной ткани: сравнение



Из вышесказанного можно понять в чем заключается отличие этих двух видов тканей. Вот сравнение гладкой и поперечно-полосатой мышечной ткани человека:

  • Поперечно-полосатая мышечная ткань является основой скелетных мышц, сердечной мышцы, опорно-двигательного аппарата. При возбудимости имеет свойство быстрого колебания. Иннервируется соматической нервной системой.
  • Гладкая мышечная ткань преобладает во внутренних органах: желудочно–кишечного тракта, матке, в мочевыводящих путях. Имеет свойство медленного изменения мембранного потенциала. Иннервируется автономной нервной системой. Обладает чувствительностью к биоактивным веществам, возможность к пластическому тонусу, регенерацией к восстановлению.

Можно сделать следующие выводы:

  • Отличия. Гладкие мышцы — одноядерные, сокращаются медленно, непроизвольно и мало утомляются, поперечно-полосатые – многоядерные, сокращаются быстро, произвольно и быстро утомляются.
  • Сходство. Наличие нервов и сосудов, присутствует в обеих мышцах оболочка из соединительных тканей и пучки мышечных волокон.

Ниже вы найдете еще немного важной информации об этих группах мышц, которая пригодится вам при подготовке к экзаменам. Читайте далее.

Различают гладкую, поперечно-полосатую мышечные ткани: ответы на вопросы по ЕГЭ

В школе на уроках биологии учитель вам рассказывал, что различают гладкую и поперечно-полосатую мышечную ткань. Все вопросы по этой теме на ЕГЭ будут связаны с функциями, строением и механизмом мышечного сокращения. Ответы должны быть такими:



Мышечные ткани человека Гладкая и поперечно-полосатая мышечная ткань человека

Видео: Лекция № 7. Мышечные ткани — 2. Лекция по гистологии

Гладкомышечные клетки способны генерировать распространяющееся возбуждение (деполяризация плазматической мембраны), растягиваться при расслаблении и укорачиваться при сокращении; передавать возбуждение соседним гладкомышечным клеткам посредством щелевых контактов; пролиферировать, подвергаться гипертрофии, а после родов возвращаться в исходное состояние. Во время беременности количество и размеры гладкомышечных клеток увеличиваются (длина - от 50 до 500-800 мкм, толщина - от 2-4 до 5-10 мкм) в результате действия гормонов (в частности, эстрогенов).

49. Опишите строение мышечного волокна. Что такое саркомер и каково его значение? Какие белки входят в состав миофибрилл поперечно-полосатого мышечного волокна?

. Саркомер - базовая сократительная единица поперечнополосатых мышц, представляющая собой комплекс нескольких белков, состоящий из трёх разных систем волокон. Из саркомеров состоят миофибриллы.

50. Укажите на особенности строения сердечной мускулатуры и особенности ее функционирования. Какую функцию выполняют волокна проводящей мускулатуры и чем они отличаются по строению от рабочей мускулатуры сердца?

Типическая и атипическая мускулатура сердца. Основная масса сердечной мышцы представлена типичными для сердца волокнами, которые обеспечивают сокращение отделов сердца. Их основная функция – сократимость. Это типическая, рабочая мускулатура сердца. Помимо нее, в сердечной мышце имеются атипические волокна, с деятельностью которых связано возникновение возбуждения в сердце и проведение возбуждения от предсердий к желудочкам.

Волокна атипической мускулатуры отличаются от сократительных волокон как по строению, так и по физиологическим свойствам. В них слабее выражена поперечная исчерченность, но они обладают способностью легко возбуждаться и большей устойчивостью к вредным влияниям. За способность волокон атипической мускулатуры проводить возникшее возбуждение по сердцу ее называют проводящей системой сердца.

Атипическая мускулатура занимает по объему очень небольшую часть сердца. Скопление клеток атипической мускулатуры называют узлами. Один из таких узлов расположен в правом предсердии, вблизи места впадения (синуса) верхней полой вены. Это синусно-предсердный узел. Здесь в сердце здорового человека возникают импульсы возбуждения, которые определяют ритм сердечных сокращений. Второй узел расположен на границе между правым предсердием и желудочками в перегородке сердца, его называют предсердно-желудочковый, или атриовентрикулярный, узел. В этой области сердца возбуждение распространяется с предсердий на желудочки.

Из предсердно-желудочкового узла возбуждение направляется по предсердно-желудочковому пучку (пучку Гисса) волокон проводящей системы, который расположен в перегородке между желудочками. Ствол предсердно-желудочкового пучка разделяется на две ножки, одна из них направляется в правый желудочек, другая – в левый.

Возбуждение с атипической мускулатуры передается волокнам сократительной мускулатуры сердца с помощью волокон, относящихся к атипической мускулатуре.

51. Общая характеристика нервной ткани. Из каких структурных элементов состоит нервная ткань?

Нервная ткань - специализированная, высокодифференцированная, формирует основную интегрирующую систему организма - нервную систему. Функция нервной системы определяется свойством нервных клеток. Свое возбуждение они передают по цепи нейронов рефлекторных дуг на ткани рабочих органов, регулируя их взаимодействие в организме и с окружающей средой.

52. Что такое нейроцит? По каким морфологическим и физиологическим особенностям классифицируются нейроциты?

Нервные клетки (нейроциты, нейроны) различных отделов нервной системы характеризуются значительным разнообразием формы, размеров и функционального значения. В соответствии с функцией нервные клетки делятся на рецепторные (афферентные, или чувствительные), ассоциативные и эффекторные (эфферентные). Рецепторные нейроны под влиянием каких-либо воздействий внешней или внутренней среды организма генерируют нервный импульс и передают его на эфферентный нейроцит. Последний, возбуждаясь, передает его на ткань рабочего органа, побуждая последний к действию. Ассоциативные нейроциты обеспечивают многообразные связи между рецепторными и эффекторными нейронами в составе рефлекторных дуг.

53. Функциональное значение астроглии, эпендимоглии и олигодендроглии, их гистологическая характеристика.

Эпендимоглия представлена клетками эпендимоцитами , которые выстилают спинномозговой канал и желудочки мозга (разновидность -танициты - выстилают дно 3 желудочка), участвуют в выработке церебральной жидкости

54. Что такое нервное волокно? Какие бывают нервные волокна? Строение миелиновых и безмиелиновых нервных волокон.

Отростки нервных клеток в совокупности с покрывающими их клетками нейроглии образуют нервные волокна. Расположенные в них отростки нервных клеток (дендриты или нейриты) называют осевыми цилиндрами, а покрывающие их клетки олигодендроглпи - нейролеммоцитами (леммоцитами, шванновскими клетками). В соответствии с составом нервных волокон и морфологическими особенностями их строения различают миелиновые и безмиелиновые нервные волокна.

55. Роль нервной системы в осуществлении единства организма. Строение мякотных и безмякотных нервных волокон. Нервные окончания и их классификация.

Мякотные нервные волокна наблюдаются как в центральной, так и в периферической нервной системе. Если шваннов-ская клетка обвивает мезаксоном один отросток нервной клетки, образуя вокруг него много витков, то такое нервное волокно называется мякотным. Мякотная оболочка имеет значительную толщину и хорошо видима при световой микроскопии. Она представляет собой мезаксон - впяченную внутрь цитоплазмы шванновской клетки ее сдвоенную плазмалемму. Начиная с мезаксона, обе плазмалеммы шванновской клетки сливаются своими поверхностными белковыми слоями в один слой, имеющий вид сплошной электронно-плотной линии, по обеим сторонам которой располагаются светлые липидные слои. За липидными слоями следует общий белковый слой. Такое слияние двух плазмалемм шванновской клетки называется миелиновой пластинкой. Количество миелиновых пластинок, обвивающих осевой цилиндр, может достигать двадцати.

Поскольку плазмалемма и образованный ею мезаксон шванновской клетки имеют в своем составе липоид миелин, то мякотная оболочка получила название миелиновой. Миелиновые оболочки нервных волокон в пределах центральной нервной системы имеют такое же строение, как и в периферической, однако в головном и спинном мозге они образованы олигодендроцитами и частично астроцитами и не покрыты снаружи тонкой соединительнотканной базальной мембраной.

Безмякотные нервные волокна распространены преимущественно во внутренних органах тела человека и млекопитающих животных. Они построены примитивнее, нежели мякотные нервные волокна. В состав безмякотного нервного волокна входят от 7 до 12 отростков нервных клеток, которые вдавлены в шванновскую клетку и окружены плазмалеммой последней. Снаружи безмякотное нервное волокно покрыто тонкой соединительнотканной базальной мембраной. Шванновские клетки отличаются от олигодендроцитов центральных отделов нервной системы тем, что лишены коротких древовидных отростков. Они располагаются цепочками, одна за другой вдоль отростков нервных клеток. Поскольку отростки нервных клеток вдавлены в цитоплазму шванновских клеток в различной степени, то плазмалемма последних, естественно, также в различной степени изолирует отдельные осевые цилиндры. Это позволяет отросткам нервных клеток переходить из одного безмякотного волокна в другое. Отростки нервных клеток, которые полностью погружены в цитоплазму шванновских клеток, как будто бы подвешены на двойной складке плазмалеммы последних. Это образование носит наименование мезаксона. Поскольку отростки нервных клеток окружены плазмалеммой шванновских клеток только один раз, то нервный импульс при прохождении рассеивается. Он проходит по безмякотным нервным волокнам в 10 раз медленнее, нежели по мякотным.

56. Строение спинального и вегетативного ганглия. Строение спинного мозга. Ядра серого вещества спинного мозга. Проводящие пути спинного мозга.

Зачатки спинальных ганглиев образуются из ганглиозной пластинки (нервного гребня), которая в дальнейшем разделяется на метамерно расположенные на дорсальной стороне нервной трубки участки, каждый из которых дает начало соответствующему спинальному ганглию.

У зародышей длиной 9-10 мм зачатки спинальных ганглиев уже хорошо сформированы и представляют собой довольно крупные образования, которые лежат друг за другом по бокам нервной трубки. Сегментарное расположение развивающихся спинальных ганглиев хорошо видно на фронтальных разрезах через спинную сторону зародыша.

57. Оболочка мозга. Строение коры полушарий головного мозга. Строение мозжечка. Клетки мозжечка и их строение.

Кора полушарий головного мозга образована серым веществом, состоящим из нескольких слоев клеток, различных по форме, размерам и функциональному значению. Наиболее специфичны для коры полушарий нервные клетки пирамидальной формы. Они характеризуются вытянутой треугольной формой перикарионов с вершиной, обращенной к поверхности мозга. От расширенного основания тела клетки, обращенного к белому веществу мозга, отходит нейрит, заканчивающийся синапсом в сером веществе смежного участка мозга или выходящий в белое вещество, формируя проводящие пути центральной нервной системы.

Мозжечок - орган координации движений и равновесия. Его афферентные и эфферентные проводящие пути формируют три пары ножек мозжечка. На поверхности органа много извилин, разграниченных глубокими бороздами. Серое вещество образует кору мозжечка и ядра, локализованные в белом веществе органа.

В коре мозжечка три слоя, отличающихся по клеточному составу: наружный - молекулярный, средний - ганглиозный и внутренний зернистый

Эфферентные клетки коры мозжечка - ганглиозные клетки (клетки Пуркине) - располагаются в один ряд и образуют ганглиозный слой мозжечка . От перикарионов этих клеток в молекулярный слой отходят 2 - 3 дендрита. Последние, разветвляясь в плоскости поперечной извилине, проходят через всю толщу молекулярного слоя. От противоположного полюса клеток отходят нейриты. Они в виде миелиновых волокон в составе белого вещества следуют к ядрам мозжечка. В пределах

зернистого слоя нейриты отдают коллатерали, которые, возвращаясь в ганглиозный слой, вступают в синаптическую связь с грушевидными клетками.

58. Строение нерва. Экстерорецепторы. Интерорецепторы.

Нерв (лат. nervus ) - составная часть нервной системы; покрытая оболочкой структура, состоящая из пучка нервных волокон (главным образом, представленных аксонами нейронов) и поддерживающей их нейроглии.

Периферический нерв состоит из нескольких пучков аксонов, покрытых оболочками из Шванновских клеток, а также несколькими соединительно-тканными оболочками: эндоневрий покрывает каждый миелинизированный аксон, несколько таких аксонов объединяются в пучки, покрытые периневрием. Несколько пучков, вместе с кровеносными сосудами и жировыми включениями, покрыты общей оболочкой, эпиневрием, и составляют нерв.

59. Функциональное назначение органов чувств, орган осязания, орган обоняния, орган зрения.

Центральная нервная система получает информацию о внешнем мире и о внутреннем состоянии организма от специализированных к восприятию раздражений разнообразных рецепторных приборов. В соответствии с местом расположения различают интеро- и экстерорецепторы. Интерорецепторы служат для восприятия специфических раздражений из внутренней среды организма: висцерорецепторы сигнализируют о состоянии внутренних органов; проприорецепторы воспринимают раздражения от органов произвольного движения (кости, мышцы, связки, суставы); вестибулорецепторы посылают импульсы о положении тела или его отдельных частей в пространстве. Экстерорецепторы воспринимают раздражения, поступающие из внешней среды. К ним относят зрительные, слуховые, обонятельные, вкусовые и осязательные рецепторы.

Гладкая мускулатура в организме высших животных и человека находится во внутренних органах, в сосудах и в коже. Гладкие мышцы способны осуществлять относительно медленные движения и длительные тонические сокращения.

Относительно медленные, часто имеющие ритмический характер сокращения гладких мышц стенок полых органов: желудка, кишок, протоков пищеварительных желез, мочевого пузыря, желчного пузыря ни др. — обеспечивают передвижение и выбрасывание содержимого этих полых органов. Примером являются маятникообразные и перистальтические движения мускулатуры кишечника.

Длительные тонические сокращения гладких мышц особенно резко выражены в сфинктерах полых органов; их тоническое сокращение препятствует выходу содержимого органа. Этим обеспечивается накопление желчи в желчном пузыре и мочи в мочевом пузыре, оформление каловых масс в прямой кишке и т. п.

Резко выраженным тонусом обладают также гладкие мышцы стенок кровеносных сосудов, особенно артерий и артериол. Toнус мышечного слоя стенок артерии регулирует величину их просвета, а тем самым уровень кровяного давления и кровоснабжения органов.

Тонус и двигательная функция гладких мышц регулируются импульсами, поступающими по вегетативным нервам, и гуморальными влияниями.

Основные функции гладких мышц:

  1. в полых органах (мочеточник, кишечник и др.) они поддерживают давление;
  2. медленное сокращение гладких мышц вызывает волнообразную перистальтику полых органов,
  3. что обеспечивает продвижение их содержимого и опорожнение органов;
  4. изменяют просвет кровеносных сосудов, тем самым регулируя в них давление;
  5. гладкие мышцы, расположенные в коже у основания волосяных сумок, при сокращении поднимают волосы и выдавливают жир из сальных желез;
  6. в глазах гладкие мышцы обеспечивают сужение и расширение зрачка, определяют толщину xрустaликa.

Особенностью гладких мышц является:

  • медленное сокращение и расслабление (десятки секунд);
  • непроизвольный характер сокращения (независимо от воли человека).

Свойства гладких мышц

Пластичность гладкой мышцы

Важным свойством гладкой мышцы является ее большая пластичность т. е. способность сохранять приданную растяжением длину без изменения напряжения. Различие между скелетной мышцей, обладающей малой пластичностью, и гладкой мышцей с хорошо выраженной пластичностью, легко обнаруживается, если их сначала медленно растянуть, а затем снять растягивающий груз. Скелетная мышца тотчас же укорачивается после снятия груза. В отличие от этого гладкая мышца после снятия груза остается растянутой до тех пор, пока под влиянием какого-либо раздражения не возникает ее активного сокращения.

Свойство пластичности имеет очень большое значение для нормальной деятельности гладких мышц стенок полых органов, например мочевого пузыря: благодаря пластичности гладкой мускулатуры стенок пузыря давление внутри него относительно мало изменяется при разной степени наполнения.

Возбудимость и возбуждение

Гладкие мышцы менее возбудимы, чем скелетные: их пороги раздражения выше, а хронаксия длиннее. Потенциалы действия большинства гладкомышечных волокон имеют малую амплитуду (порядка 60 мв вместо 120 же в скелетных мышечных волокнах) и большую продолжительность - до 1-3 секунд. На рис. 151 показан потенциал действия одиночного волокна мышцы матки.

Рефрактерный период продолжается в течение всего периода потенциала действия, т. е. 1-3 секунд. Скорость проведения возбуждения варьирует в разных волокнах от нескольких миллиметров до нескольких сантиметров в секунду.

Существует большое число различных типов гладких мышц в теле животных и человека. Большинство полых органов тела выстлано гладкими мышцами, имеющими сенцитиальный тип строения. Отдельные волокна таких мышц очень тесно примыкают друг к другу и создается впечатление, что морфологически они составляют единое целое.

Раздражители гладких мышц . Одним из важных физиологически адекватных раздражителей гладких мышц является их быстрое и сильное растяжение. Последнее вызывает деполяризацию мембраны мышечного волокна и возникновение распространяющегося потенциала действия.

Схема строения гладкой мышечной ткани: 1 -- гладкая мышечная клетка; 2 -- её ядро; 3 -- миофибриллы; 4 -- сарколемма; 5 -- соединительная ткань; 6 -- нерв; 7 -- кровеносный капилляр.

Гладкая мускулатура (гладкие мышцы) - это сократимая ткань, которая состоит из клеток и не имеющая поперечной исчетченности.

Гладкие мышцы у некоторых беспозвоночных образуют всю мускулатуру тела, а у позвоночных они входят в состав оболочек внутренних органов (кровеносных сосудов, кишечника, дыхательных путей, многих желез, а также выделительных и половых органов).

Для гладких мышц характерно медленное сокращение и способность долго находиться в сокращенном состоянии, затрачивая при этом достаточно мало энергии и не подвергаясь утомлению.

Гладкие мышцы расположены в стенках кровеносных сосудов и некоторых внутренних органах. Они сужают или расширяют сосуды, продвигают пищу по желудочно-кишечному тракту, сокращают стенки мочевого пузыря. Их работа не зависит от воли человека.

Относительно медленные, часто ритмические сокращения гладких мышц стенок полых органов (желудка, кишок, протоков пищеварительных желез, мочеточников, мочевого пузыря, желчного пузыря и т.д.) обеспечивают перемещение содержимого. Длительные тонические сокращения гладких мышц особенно резко выражены в сфинктерах полых органов; их сокращение препятствует выходу содержимого.

В состоянии постоянного тонического сокращения находятся также гладкие мышцы стенок кровеносных сосудов, особенно артерий и артериол. Тонус мышечного слоя стенок артерий регулирует величину их просвета и тем самым уровень кровяного давления и кровоснабжения органов. Тонус и двигательная функция гладких мышц регулируется импульсами, поступающими по вегетативным нервам, гуморальными влияниями.

Физиологические особенности гладких мышц

Важным свойством гладкой мышцы является ее большая пластичность, т.е. способность сохранять приданную растяжением длину без изменения напряжения. Скелетная мышца, наоборот, сразу укорачивается после снятия груза. Гладкая мышца остается растянутой до тех пор, пока под влиянием какого-либо раздражения не возникает ее активного сокращения. Свойство пластичности имеет большое значение для нормальной деятельности полых органов - благодаря ему давление внутри полого органа относительно мало изменяется при разной степени его наполнения.

Характерной особенностью гладких мышц является их способность к спонтанной автоматической деятельности (мышцы желудка, кишечника, желчного пузыря, мочеточников). Это свойство регулируется нервными окончаниями. Гладкие мышцы пластичны, т.е. способны сохранять приданную растяжением длину без изменения напряжения. Скелетная мышца, наоборот, обладает малой пластичностью и эту разницу легко установить в следующем опыте: если растянуть с помощью грузов и гладкую и поперечно-полосатую мышцы и снять груз, то скелетная мышца сразу же после этого укорачивается до первоначальной длины, а гладкая мышца долгое время может находиться в растянутом состоянии.

Такое свойство гладких мышц имеет большое значение для функционирования внутренних органов. Именно пластичность гладких мышц обеспечивает лишь небольшое изменение давления внутри мочевого пузыря при его наполнении.

Сокращение и расслабление гладких мышц происходит медленно. Это способствует наступлению перестальтических и маятникообразных движений органов пищеварительного тракта, что приводит к перемещению пищевого комка. Длительное сокращение гладких мышц необходимо в сфинктерах полых органов и препятствует выходу содержимого: желчи в желчном пузыре, мочи в мочевом пузыре. Сокращение гладкомышечных волокон совершается независимо от нашего желания, под воздействием внутренних, не подчиненных сознанию причин.

Особенности структуры. Гладкая мускулатура представлена практически во всех тканях и органах: сосуды, воздухоносные пути, желудочно-кишечный тракт, мочеполовая система и т.д.

Основной структурной единицей гладких мышц является гладкомышечная клетка (ГМК), имеющая обычно удлиненную веретенообразную форму. ГМК располагаются параллельно и последовательно, образуя мышечные пучки или тяжи, и мышечные слои. Их размеры зависят от вида и функционального состояния гладкой мышцы: 20-500 мкм в длину и 5 – 20 мкм в толщину в средней части клетки.

Снаружи ГМК покрыта сарколеммой, состоящей, как и у других мыщц, из плазматической и базальной мембраны. Под электронным микроскопом в плазматической мембране видны своеобразные впячивания, колбовидной формы, так называемые кавеолы и электронноплотные участки. Некоторые исследователи считают, что эти тяжи являются местом прикрепления актиновых протофибрилл.

Хотя большая часть поверхности одной мышечной клетки отделена от соседних мышечных клеток пространством в 100 нм и более (межклеточное пространство), которое заполнено коллагеновыми и эластиновыми волокнами, фибробластами, капиллярами и др., для ГМК характерны и другие виды взаимодействия:

1. Нексусы: щель между контактирующими мембранами соседних клеток очень узка – 2 – 3 нм, в мембранах нексусов контактирующих клеток обнаруживаются кластерные образования и внутримембранные частицы размером 9 нм. Полагают, что эти частицы представляют собой межклеточные ионные каналы.

2. Десмосомоподобная связь. В областях этих контактов обнаруживается наличие участков электронно-плотного вещества. В висцеральных мышцах ширина щели между контактирующими мембранами при этом типе контактов может достигать 20 – 60 нм. Полагают, что этот вид контактов служит в основном для механического соединения клеток.

3. Третий тип связи между клетками – это связь с помощью отростков, которыми одна клетка входит в соответствующее углубление другой. Ширина щели между мембранами соседних клеток в этом случае 10 – 20 нм. Полагают, что эти связи важны для передачи механической силы между клетками.

Пассивные электрические свойства гладких мышц

Гладкомышечная ткань, несмотря на дискретность с морфологической точки зрения, является функциональным синцитием, в котором плазматические мембраны многих мышечных клеток представляют собой как бы единую непрерывную мембрану одной большой мышечной клетки. Поэтому, основные показатели ГМК можно сравнить с кабельным свойствами аксона:

1. постоянная времени (λ) 100-300 мс и постоянная длины (τ) 1-3 мм;

2. сопротивление и емкость мембраны 0,6 -2,9 ГОм и 30 – 40 пкФ, соответственно;


3. удельное сопротивление и емкость мембраны 10–50 кОм/см 2 и 1,3-3 мкФ/см 2 , соответственно;

4. удельное сопротивление миоплазмы порядка 250 Ом/см.

Потенциал покоя (ПП) различных ГМК находится в пределах от –50 до –60 мВ. В его образовании участвуют главным образом ионы K + , Na + и Cl - . Особенностью ионного состава ГМК является большая внутриклеточная концентрация ионов хлора и натрия.

Тот факт, что величина ПП ГМК значительно отличается от равновесного калиевого потенциала (-55 мВ для ГМК taenia coli, тогда как Е к =-90 мВ), объясняется в первую очередь тем, что мембрана ГМК обладает так же относительно высокой проницаемостью для ионов натрия и хлора. Соотношение проницаемости мембраны ГМК для этих ионов равно: P K:P Na:P Cl =1:0,16:0,61. Расчеты величины ПП по формуле Гольдмана-Ходжкина-Катца с учетом этих проницаемостей и потенциалов равновесия для соответствующих ионов (E K =-89 мВ; E Na =+62 мВ; E Cl =-22 мВ) дали величину потенциала покоя равную только –37 мВ. Таким образом, измеренная величина ПП оказалась почти на 20 мВ выше расчетной.

Роль ионов кальция в этом мала, так как они обладают низкой проницаемостью через мембрану ГМК, однако они существенно влияют на проницаемость мембраны к другим ионам и, в частности к ионам Na + . Удаление ионов кальция из омывающего раствора сопровождается деполяризацией клеток и существенным уменьшением сопротивления мембраны.

Другой причиной этого расхождения может быть участие в образовании ПП электрогенного компонента натриевого насоса, однако ток, генерируемый натриевым насосом, может создавать потенциал лишь около 5 мВ. Еще одной причиной расхождения между расчетными и теоретическими значениями ПП может быть высокая внутриклеточная концентрации ионов хлора.

Потенциал действия (ПД) гладких мышц позволяет разделить их по способности его генерировать в ответ на пороговую и сверхпороговую стимуляцию на:

1. Фазные – быстро сокращающиеся мышцы, способны генерировать ПД, имеют относительно высокую скорость укорочения и часто обладают спонтанной электрической и сократительной активностью. Их ответ на деполяризацию мембраны является относительно быстрым, но носит транзиторный характер. Примером является: ГМК пищеварительного тракта, матки, мочевыводящих путей, воротной вены.

2. Тонические гладкие мышцы, как правило, отвечают на стимуляцию агонистом градуальной деполяризацией, не генерируют ПД и спонтанную сократительную активности, имеют низкую скорость укорочения, но могут эффективно поддерживать сокращенное (тоническое) состояние в течение продолжительного времени.

ПД различных ГМК имеют форму от простых спайковых потенциалов длительностью 20 – 50 мс (миометрий, воротная вена, кишка), до сложных – с плато и осцилляциями на них, длительностью до 1 сек и больше (мочеточник, антральная часть желудка).

Особенностью электрогенеза ГМК является то, что главную роль в генерации ПД играют ионы Ca 2+ . Эти ионы ответственны за генерацию деполяризующего входящего тока, который состоит из двух компонентов: 1.начального инактивирующегося – достигнув своего максимума, он не держится на постоянном уровне, а медленно уменьшается;

2.последующего неинактивирующегося, который не инактивируется при больших деполяризующих смещениях мембранного потенциала.

Инактивация входящего кальциевого тока зависит не столько от величины мембранного потенциала, сколько от концентрации ионов кальция внутри гладкомышечной клетки. Функциональное значение этого явления состоит, по-видимому, в том, что ионы кальция, входящие в ГМК, через отрицательную обратную связь регулируют интенсивность их возбуждения, а следовательно, и поступление в клетку самих ионов кальция.

Ионы калия, ответственные за генерацию выходящего гиперполяризующего тока, так же оказывают влияние на амплитуду и продолжительность ПД в зависимости от концентрации ионов кальция внутри ГМК. Хотя калиевый ток продолжает увеличиваться и при всех возрастающих положительных смещениях мембранного потенциала.

Все воздействия, ведущие к угнетению калиевой проводимости, способствуют возникновению ПД в тех ГМК, которые в исходном состоянии не способны генерировать ПД. Это объясняет отсутствие ПД в тонических мышцах. В нормальных условиях мембрана этих ГМК обладает большой калиевой проводимостью мембраны, препятствующая развитию регенеративной деполяризации.

ПД ГМК, состоящие из начального быстрого пикового компонента и последующего плато, имеют более сложную ионную природу. Например, в ГМК мочеточника начальный пиковый компонент имеет преимущественно кальциевую природу, тогда как последующий медленный компонент плато – преимущественно натриевую.

Спонтанная активность гладких мышц , имеющая миогенную природу, имеет два основных типа:

1. Повторно возникающие ПД различной частоты и степени регулярности , не сопровождающиеся длительной стойкой деполяризацией ГМК. В основе лежит способность определенной группы ГМК генерировать так называемые генераторные потенциалы (предпотенциалы). Они обнаруживаются при внутриклеточном микроэлектродном отведении в виде небольшой медленной деполяризации, которая достигнув порога возбуждения переходит в быстро нарастающую фазу деполяризации ПД.

2. Медленные волны деполяризации могут быть различными по форме, амплитуде (10 – 30 мВ), продолжительности (2 – 10 с), частоте (1 – 18 колебаний в минуту), скорости распространения (до 8 см/сек). Предполагается, что эти волны первично возникают в особых пейсмекерных мышечных клетках. Когда медленная волна достигает порога возбуждения, могут возникать потенциалы действия, частота которых зависит от амплитуды волны.

Особенности сократительного аппарата ГМК обусловлена следующим:

1. Отсутствием Т-системы;

2. Незначительным объемом СПР (2 – 7 % объема цитоплазмы).

Сократительный аппарат ГМК представлен миозиновыми и актиновыми протофибриллами, а так же рядом регуляторных белков: киназой легких цепей миозина, фосфатазой легких цепей миозина, тропомиозином, кальдесмоном, кальпонином. Соотношение актиновых и миозиновых нитей в ГМК колеблется от 1:5 до 1:27, что заметно больше чем в скелетных.

Молекула гладкомышечного миозина состоит из двух тяжелых цепей и двух пар легких цепей – регуляторных с массой 20 кДа (РЛЦ) и существенных с массой 17 кДа (ЛЦ).

Миозин ГМК отличается от миозина скелетных мышц размером (толщина 12–15 нм, длина 2,2 мкм), формой, аминокислотным составом, растворимостью, чувствительностью к ферментам, солям и денатурации, более низкой (в 10 раз) АТФ-азной активностью.

Актиновые протофибриллы ГМ почти не отличаются от исчерченных. Они имеют простую удлиненную форму, диаметр их 6 – 8 нм. На поперечном срезе актиновые протофибриллы имеют круглую форму. Иногда обнаруживается гесагональное расположение тонких протофибрилл относительно толстых, как и в исчерченных мышечных волокнах.

В состав актиновых протофибрилл ГМК входят актин, тропомиозин и кальдесмон. Из тропомиозина ГМК выделен белок леотонин, который, по- видимому, выполняет функции аналогичные тропонину С скелетных мышц. Актиновые протофибриллы содержат так же ряд дополнительных минорных и модулирующих белков: филамин и винкулин, которые участвуют в прикреплении тонких протофибрилл к плотным тельцам мембраны, а, кроме того, участвуют в активации актомиозиновой АТФазы и в ряде других процессов.

В ГМК, помимо миозиновых и актиновых протофибрилл имеются так называемые промежуточные протофибриллы, которые образуют своеобразную внутриклеточную сеть и связывают между собой плотные тельца плазматической мембраны и миоплазмы.

Предполагается, что актиновые и миозиновые протофибриллы объединены в миофибриллы, простирающиеся на относительно небольшое расстояние под углом к длинной оси мышечной клетки. Своими концами миофибриллы прикреплены к плотным тельцам плазматической мембраны (в состав которых входит белок α-актин), являющимися аналогами z-пластинок скелетных мышечных волокон.

Киназа легких цепей миозина – фермент, содержащий:

А) каталитический домен, в котором находятся участки связывания АТФ и регуляторных легких цепей миозина.

Б) регуляторный домен, содержащий участок связывания комплекса кальций-кальмодулин.

В) автоингибиторную псевдосубстратную последовательность, которая в отсутствии комплекса кальций-кальмодулин взаимодействует с каталитическим центром и блокирует фосфотрансферазную реакцию.

Фосфатаза легких цепей миозина – это фермент, относящийся к фосфатазам 1 типа, состоит из каталитической и регуляторной субъединиц.

Тропомиозин в ГМК содержится в количестве 1:14 по отношению к актомиозину, он препятствует взаимодействию миозина с актином.

Кальдесмон – регуляторный белок, связан с филаментами актина, расположен непосредственно вдоль тропомиозина в канавке, формируемой гантелеобразными молекулами актина. Функция кальдесмона заключается в удержании тропомиозина в положении, препятствующем взаимодействию миозина с активным центром актина, а так же препятствии продвижения филаментов актина по миозину.

Кальпонин – актин- и кальмодулин-связывающий белок, относительно специфичный для гладкой мускулатуры. Предполагается, что кальпонин участвует в кальций-зависимой регуляции сокращения, а его прямое фосфорилирование протеинкиназой С вносит вклад в повышение кальциевой чувствительности ГМ. Он расположен на актиновых филаментах, ингибирует АТФ-азу актомиозина и подвижность актиновых филаментов вдлоь миозина.

Электромеханическое сопряжение в ГМК представляет цепь событий, ведущих к активации сокращения. Как и в скелетных мышцах, запускается увеличением концентрации ионизированного кальция в миоплазме выше10 -7 М. Максимальное сокращение ГМК наблюдается при концентрации -10-5 М.

Особенности. Так как при удалении ионов Са 2+ из внешней среды или добавлении блокаторов кальциевого тока угнеталась как электрическая так и сократительная активность ГМК, значит развитие сопряжения возбуждения-сокращения обеспечивается внеклеточными ионами Са 2+ , участвующими в генерации ПД.

Основные пути поступления ионов кальция в ГМК:

1.Кальциевые каналы плазматической мембраны:

А.Потенциал-зависимые инактивирующиеся кальциевые каналы, ответственные за генерацию потенциалов действия.

Б.Потенциал-зависимые неинактивирующиеся кальциевые каналы, обеспечивающие станционарный ток ионов кальция через деполяризованную мембрану.

В.Хемочувствительные (рецептор-управляемые) кальциевые каналы, открывающиеся при активации мембранных рецепторов.

2. Немитохондриальное депо:

А.Саркоплазматических ретикулум (СПР).

Б.Примембранные слои.

В.Внутриклеточные везикулы-кальцисомы.

Основные пути удаления ионов кальция из ГМК:

1. Кальциевые насосы плазматической мембраны и СПР.

2. Натрий-кальциевый обмен.

Молекулярные механизмы сокращения ГМК.

Основным акцептором Са 2+ в цитоплазме ГМК является кальмодулин, который после связывания 4 ионов кальция взаимодействует с регуляторными белками – киназой легких цепей миозина и кальдесмоном. Активированная таким образом киназа легких цепей миозина фосфорилирует регуляторные легкие цепи миозина и тем самым активирует Mg 2+ -зависимую АТФ-азу миозина, тем самым, осуществляя сокращение актин-зависимым способом .

Однако в покоящейся мышце участки взаимодействия с миозином экранированы лежащим вдоль актинового тяжа комплексом тропомиозина с кальдесмоном. Поэтому вторым необходимым условием активации актомиозина является такое изменение конформации кальдесмона, которое, по все видимости, освобождает тропомиозин, следствием чего является экспонирование миозин-связывающих участков на актине. Это происходит при взаимодействии кальдесмона с комплексом кальций-кальмодулин, или сходным с ним другим кальций-связывающим белком.

Таким образом, развитие сокращения гладких мышц требует одновременной активации как миозина путем его прямого фосфорилирования, так и актина путем устранения ингибирующего действия кальдесмона. То есть при высокой степени активации миозина кальдесмон может лишь тормозить, но не способен полностью блокировать его кооперативное связывание с актином.

Снижение внутриклеточной концентрации кальция сопровождается диссоциацией комплексов кальмодулина с киназой легких цепей миозина и кальдесмоном, ее инактивацией и восстановлением ингибирующего действия кальдесмона. Последующее дефосфорилирование легких цепей миозина специфичной, кальций-независимой фосфотазой легких цепей миозина и переход тонких филаментов в неактивное состояние определяет расслабление ГМК. Как и в случае активации сокращения, основным условием релаксации является дефосфорилиривание миозина, тогда как кальдесмон-зависимая инактивация тонких филаментов может ускорять расслабление.

Однако хорошо известно, что сила сокращения ГМК не всегда прямо пропорциональна внутриклеточной концентрации ионов кальция. Изменяя чувствительность сократительного аппарата ГМК к ионам кальция при его фактическом постоянстве, можно как бы модулировать изменения внутриклеточного уровня кальция. В настоящее время рассматриваются несколько механизмов, обеспечивающих увеличение кальциевой чувствительности сократительного аппарата.

1. Механизм связанный с активацией протеинкиназы С диацилглицеролом. Мишенями протеинкиназы С могут быть все основные белки регуляторы гладкомышечного сокращения – киназу и фосфорилазу легких цепей миозина, кальдесмон и регуляторные цепи миозина:

2. Активация мономерных G-белков семейства Rho и ингибирующим фосфорилированием фосфорилазы легких цепей миозина Rho-протеинкиназой.

3. Феномен защелки. Этот механизм постулирует специфичное для ГМК образование нециклирующих дефосфорилированных актомиозиновых мостиков. Причем миозин дефосфорилируется в составе уже сформированных и находящихся в состоянии сильного связывания мостиков, что приводит к существенному уменьшению константы скорости диссоциации головок миозина и образованию так называемых защелкнутых мостиков.

Однако in vivo, тонический сократительный ответ ГМК достигается при комбинации всех механизмов.

Сократительная и электрическая активность ГМК регулируется множеством физиологически и биологически активных веществ. Реализация их эффектов на гладкомышечные клетки осуществляется с участием систем вторичных посредников.

Активация цАМФ-зависимой сигнальной системы угнетает сокращения ГМК из-за:

1. Повышения калиевой проводимости мембраны – ее гиперполяризация.

2. Стимуляции работы кальциевых насосов плазматической мембраны и СПР.

3. Снижение сродства фосфорилированной киназы легких цепей миозина к кальмодулину.

4. Снижения чувствительности сократительного аппарата ГМК к ионам кальция.

5. Активации работы натрий-калиевой АТФазы.

Активация кальциевой сигнальной системы:

1. Стимулирует работу кальциевого насоса плазматической мембраны и СПР.

2. Комплекс кальций-кальмодулин способен потенцировать кальций-зависимую калиевую проводимость мембраны ГМК

3. Комплекс кальций-кальмодулин участвует в кальций-зависимой инактивации кальциевых каналов.

Сигнальная система, связанная с метаболизмом мембранных фосфоинозитидов.

1. Ионозитол-1,4,5,-трифосфат индуцирует освобождение Са 2+ из СПР.

2. Стимулирует деятельность кальциевого насоса, обеспечивая реабсорбцию кальция.

3. Активация протеинкиназы С оказывает угнетающее влияние на кальциевые каналы, метаболизм мембранных фосфоинозитидов, снижает сродство рецепторов к агонистам рецепторов.

4. Активация протеинкиназы С повышает калиевую проводимость мембраны из-за активации натрий-протонного обмена.

Активация цГМФ-зависимой сигнальной системы связана с метаболизмом оксида азота и вызывает:

1. Модулирующее влияние на кальциевую проводимость мембраны

2. Снижает сродство киназы легких цепей миозина к кальмодулину.

3. Увеличивает калиевую проводимость мембраны

4. Ингибирует активность некоторых изоформ протеинкиназы С

5. Снижает активность фосфолипазы С

6. модулирует активность натрий-калиевого насоса

Особенности биомеханики сокращения ГМК.

Потребление АТФ гладкомышечными клетками (у теплокровных) животных в сокращенном состоянии почти в 1000 раз меньше чем в скелетных мышцах.

Сила, развиваемая гладкой мышцей, определяется следующими факторами

1. агентом, вызывающим активность

2. концентрацией этого агента

3. начальной длинной мышцы.

Имеется оптимальная длина L 0 мышцы, при которой развиваемая ей сила, достигает максимума при действии агониста в данной концентрации.

В отличие от скелетной мышцы, при длинах меньших L 0 ГМ генерирует большую силу, чем скелетная, а при длинах больших, чем L 0 , активная сила ГМ падает более полого, чем скелетной.