Классификация неорганических соединений и их химические свойства. Относительность классификаций веществ. неорганические вещества. Приведем примеры и названия солей

Видеоурок: Классы неорганических соединений

Лекция: Классификация неорганических веществ. Номенклатура неорганических веществ (тривиальная и международная)

Начнем с простого деления неорганических веществ на простые и сложные. Молекулы простых состоят из атомов одного элемента, а сложных из атомов нескольких элементов. Простые делятся на металлы и неметаллы. Сложные в свою очередь подразделены на оксиды, гидроксиды, соли.


Оксиды

Оксиды - это сложные вещества, состоящие из двух элементов, один из которых кислород со степенью окисления -2.

Оксиды подразделяются на солеобразующие (основные, кислотные, амфотерные), несолеобразующие и солеобразные (двойные).

    Основные оксиды обладают основными свойствами и способны образовать типичные металлы, имеющие степень окисления +1, +2, (Li 2 O, MgO, CaO, CuO).

    Кислотные оксиды обладают кислотными свойствами и способны образовать неметаллы со степенью окисления более +2. Так же образуют металлы со степенью от +5 до +7 (SO 2 , SeO 2 , P 2 O 5 , As 2 O 3 , CO 2 , SiO 2 , CrO 3 , и Mn 2 O 7). Исключение: у оксидов NO 2 и ClO 2 нет соответствующих кислотных гидроксидов. Несмотря на это, их считают кислотными.

    Амфортерные оксиды обладают и основными, и кислотными свойствами. Они образованы амфотерными металлами, имеющими степень окисления +2, +3, +4 (Cr 2 O 3 , Al 2 O 3 , GeO 2 , SnO 2 . В данной группе оксидов со степенью окисления +2 всего 4: ZnO, PbO, SnO, BeO.

    Несолеобразующие оксиды не обладают ни основными, ни кислотными свойствами. К ним относятся оксиды неметаллов со степенью окисления +1, +2. Их всего 4: CO, NO, N 2 O, SiO.

    Солеобразные оксиды образованы двумя элементами с разными степенями окисления. К примеру, магнитный железняк FeO·Fe 2 O 3 , который при взаимодействии с кислотами образует две соли: FeO·Fe 2 O 3 + 4H 2 SO 4 → FeSO 4 + Fe 2 (SO 4) 3 + 4H 2 O

Гидроксиды


Гидроксиды - это сложные вещества, состоящие из оксидов и воды, имеющие гидроксогруппу (OH -).

Они подразделяются на основания, кислородсодержащие кислоты и амфотерные гидроксиды.

  • Основания – гидроксиды металлов со степенью окисления +1, +2, проявляющие основные свойства и состоящие из ионов металлов и гидроксид – ионов OH - .

К примеру:

  • гидроксид натрия - Na + OH,
  • гидроксид кальция - Ca +2 (OH) 2 ,
  • гидроксид железа - Fe +3 (OH) 3 .
Все основания – твердые вещества. Они делятся на растворимые (щелочи) и нерастворимые. О том, растворимо основание в воде или нет можно узнать из таблицы.

  • Кислотные гидроксиды (кислородсодержащие кислоты) – гидроксиды неметаллов и металлов со степенью окисления +5, +6, проявляющие кислотные свойства, состоящие из гидроксоний – катионов Н 3 О + и кислотного остатка.

К примеру:

  • Азотная кислота - HNO 3 ,
  • Серная кислота - H 2 SO 4.
  • Амфотерные гидроксиды – гидроксиды металлов со степенью окисления +2, +3, +4, проявляющие и кислотные, и основные свойства. В данной группе гидроксидов со степенью окисления +2 всего 4: Zn(OН) 2 , Pb(OН) 2 , Sn(OН) 2 , Be(OН) 2 .

Соли


Соли - сложные химические вещества, образованные атомами металлов, связанных с кислотными остатками.

К примеру:

  • Хлорид натрия - NaCl,
  • Сульфат натрия - Na 2 SO 4 ,
  • Хлорид кальция - СаCl 2 ,
  • Сульфат кальция - СаSO 4 .

Существуют следующие виды солей:

    Средние соли – соли, содержащие атомы металлов и кислотного остатка. К примеру: нитрат кальция Ca(NO 3) 2 , сульфат свинца PbSO 4 , карбонат натрия Na 2 CO 3 и др.

    Кислые соли – соли, содержащие атомы металлов, кислотного остатка и водорода. Атомы металла образуются при нейтрализации основания избытком кислоты. Чтобы образовать название какой - либо кислой соли, необходимо к названию соли добавить приставку гидро - или дигидро -. Приставка зависит от числа атомов водорода, входящих в состав кислой соли. Пример : KHCO 3 – гидрокарбонат калия, КH 2 PO 4 – дигидроортофосфат калия. Так же необходимо помнить, что кислые соли способны образовывать две и более основные кислоты. Ими могут быть как кислородсодержащие, так и бескислородные кислоты.

    Основные соли – соли, содержащие атомы металлов, кислотного остатка и гидроксогруппы (OH−). Чтобы определить название основной соли, необходимо к названию обычной соли добавить приставку гидроксо- или дигидроксо. Приставка будет зависеть от количества ОН - групп, входящих в состав соли. К примеру, (CuOH) 2 CO 3 - гидроксокарбонат меди (II). Так же следует знать, что основные соли образуют основания, содержащие в составе две и более гидроксогрупп.

    Двойные соли – соли, содержащие катионы двух металлов и кислотный остаток. К примеру, сульфат алюминия - калия KAl(SO 4) 2 ·12H 2 O

    Смешанные соли – соли, содержащие анионы двух металлов и кислотный остаток. К примеру, дигидроксокарбонат меди (II) Cu 2 (OH) 2 CO 3 .

    Гидратные соли – соли, содержащие молекулы кристаллизационной воды. К примеру, декагидрат сульфата натрия Na 2 SO 4 10H 2 O

Номенклатура неорганических веществ

Построение формул и названий определяются химической тривиальной и международной номенклатурой. Тривиальные названия – это исторически сложившиеся традиционные названия.


Формула

Тривиальные названия

Международные названия

Поваренная соль

Хлорид натрия

Едкий натр

Гидроксид натрия

Сода, кальцинированная сода

Карбонат натрия

Питьевая сода

Гидрокарбонат натрия

Жидкое стекло

Силикат натрия

Негашеная известь

Оксид кальция

Гашеная известь

Гидроксид кальция

Известняк, мел, мрамор

Карбонат кальция

Фторид кальция

Графит, алмаз

Угарный газ

Монооксид углерода

Углекислый газ

Диоксид углерода

Едкое кали

Гидроксид калия

Карбонат калия

Калийная селитра

Нитрат калия

Бертолетова соль

Хлорат калия

Желтая кровяная соль

Гексацианоферрат (II) калия

Красная кровяная соль

Гексацианоферрат (III) калия

Жженая магнезия Оксид магния

Оксид магния

Магнезит Карбонат магния

Карбонат магния

Оксид железа (III)

Железный колчедан, пирит

Дисульфид железа

Fe 4 3

Берлинская лазурь

Гексацианоферрат (II) железа (III)

Железный купорос

Гептагидрат сульфата железа (II)

Медный блеск

Сульфид меди (I)

Cu 2 (OH) 2 CO 3

Карбонат гидроксомеди (II)

Медный купорос

Пентагидрат сульфата меди (II)


Возник вопрос по теме? Задавайте его репетитору по химии 👉


В настоящее время известно более 500 тысяч неорганических соединений, знать их формулы, названия, а тем более свойства практически невозможно. Для того чтобы легче ориентироваться в огромном многообразии химических веществ, все вещества разделены на отдельные классы, включающие соединения, сходные по строению и свойствам.

Первоначально все химические вещества делятся на простые и сложные.

Простые вещества подразделяются на металлы и неметаллы.

Помимо типичных металлов и неметаллов есть большая группа веществ, обладающая промежуточными свойствами, их называют металлоидами.

Сложные вещества подразделяются на четыре класса химических соединений: оксиды , основания, кислоты и соли. Эта классификация разработана выдающимися химиками XVIII-XIX веков Антуаном Лораном Лавуазье , Михаилом Васильевичем Ломоносовым , Йёнсом Якобом Берцелиусом , Джоном Дальтоном .

На рис. 8 приведены важнейшие классы неорганических соединений.

Рисунок 8 - Важнейшие классы неорганических соединений

Гидроксиды - тип сложных веществ, в состав которых входят атомы некоторого элемента Е (кроме фтора и кислорода) и гидроксогруппы ОН; общая формула гидроксидов Е(ОН) n , где n = 1÷6. Форма гидроксидов Е(ОН) n называется орто -формой; при n > 2 гидроксид может находиться также в мета -форме, включающей кроме атомов Е и групп ОН еще атомы кислорода О, например Е(ОН) 3 и ЕО(ОН), Е(ОН) 4 и Е(ОН) 6 и ЕО 2 (ОН) 2 .

Гидроксиды делят на две противоположные по химическим свойствам группы: кислотные и основные гидроксиды.

Кислотные гидроксиды содержат атомы водорода , которые могут замещаться на атомы металла при соблюдении правила стехиометрической валентности. Большинство кислотных гидроксидов находится в мета -форме, причем атомы водорода в формулах кислотных гидроксидов ставят на первое место, например H 2 SO 4 , HNO 3 и H 2 CO 3 , а не SO 2 (OH) 2 , NO 2 (OH) и CO(OH) 2 . Общая формула кислотных гидроксидов - Н х ЕО у , где электроотрицательную составляющую ЕО у х - называют кислотным остатком. Если не все атомы водорода замещены на металл, то они остаются в составе кислотного остатка.

Названия распространенных кислотных гидроксидов состоят из двух слов: собственного названия с окончанием «ая» и группового слова «кислота».

Названия кислот и кислотного остатка представлены в табл. Приложения А.

Названия кислотных остатков используют при построении названий солей.

Основные гидроксиды содержат гидроксид-ионы, которые могут замещаться на кислотные остатки при соблюдении правила стехиометрической валентности. Все основные гидроксиды находятся в орто -форме; их общая формула М(ОН) n , где n = 1,2 (реже 3,4) и М n +- катион металла.


Примеры формул и названий основных гидроксидов:

Важнейшим химическим свойством основных и кислотных гидроксидов является их взаимодействие их между собой с образованием солей (реакция солеобразования ), например:

Ca(OH) 2 + H 2 SO 4 = CaSO 4 + 2H 2 O

Ca(OH) 2 + 2H 2 SO 4 = Ca(HSO 4) 2 + 2H 2 O

2Ca(OH) 2 + H 2 SO 4 = Ca 2 SO 4 (OH) 2 + 2H 2 O

Соли - тип сложных веществ, в состав которых входят катионы М n + и кислотные остатки.

Соли с общей формулой М х (ЕО у ) n называют средними солями, а соли с незамещенными атомами водорода, - кислыми солями. Иногда соли содержат в своем составе также гидроксид - или (и) оксид - ионы; такие соли называют основными солями.

Приведем примеры и названия солей:

Кислые и основные соли могут быть превращены в средние соли взаимодействием с соответствующим основным и кислотным гидроксидом, например:

Ca(HSO 4) 2 + Ca(OH) = CaSO 4 + 2H 2 O

Ca 2 SO 4 (OH) 2 + H 2 SO 4 = 2CaSO 4 + 2H 2 O

Встречаются также соли, содерхащие два разных катиона: их часто называют двойными солями , например:

Кислотные и осн?вные оксиды

Оксиды Е х О у - продукты полной дегидратации гидроксидов:

Кислотным гидроксидам (H 2 SO 4 , H 2 CO 3) отвечают кислотные оксиды (SO 3 , CO 2), а основным гидроксидам (NaOH, Ca(OH) 2) - основные оксиды (Na 2 O, CaO), причем степень окисления элемента Е не изменяется при переходе от гидроксида к оксиду.

Пример формул и названий оксидов:

Кислотные и основные оксиды сохраняют солеобразующие свойства соответствующих гидроксидов при взаимодействии с противоположными по свойствам гидроксидами или между собой:

N 2 O 5 + 2NaOH = 2NaNO 3 + H 2 O

3CaO + 2H 3 PO 4 = Ca 3 (PO 4) 2 + 3H 2 O

La 2 O 3 + 3SO 3 = La 2 (SO 4) 3

Амфотерные оксиды и гидроксиды

Амфотерность гидроксидов и оксидов - химическое свойство, заключающееся в образовании ими двух рядов солей, например, для гидроксида и оксида алюминия:

(а) 2Al(OH) 3 + 3SO 3 = Al 2 (SO 4) 3 + 3H 2 O

Al 2 O 3 + 3H 2 SO 4 = Al 2 (SO 4) 3 + 3H 2 O

(б) 2Al(OH) 3 + Na 2 O = 2NaAlO 2 + 3H 2 O

Al 2 O 3 + 2NaOH = 2NaAlO 2 + H 2 O

Так, гидроксид и оксид алюминия в реакциях (а) проявляют свойства основных гидроксидов и оксидов, т.е. реагируют с кислотными гидроксидам и оксидом, образуя соответствующую соль - сульфат алюминия Al 2 (SO 4) 3 , тогда как в реакциях (б) они же проявляют свойства кислотных гидроксидов и оксидов, т.е. реагируют с основными гидроксидом и оксидом, образуя соль - диоксоалюминат (III) натрия NaAlO 2 . В первом случае элемент алюминий проявляет свойство металла и входит в состав электроположительной составляющей (Al 3+), во втором - свойство неметалла и входит в состав электроотрицательной составляющей формулы соли (AlO 2 -).

Если указанные реакции протекают в водном растворе, то состав образующихся солей меняется, но присутствие алюминия в катионе и анионе остаётся:

2Al(OH) 3 + 3H 2 SO 4 = 2 (SO 4) 3

Al(OH) 3 + NaOH = Na

Здесь квадратными скобками выделены комплексные ионы 3+ - катион гексаакваалюминия(III), - - тетрагидроксоалюминат(III)-ион.

Элементы, проявляющие в соединениях металлические и неметаллические свойства, называют амфотерными, к ним относятся элементы А-групп периодической системы - Be, Al, Ga, Ge, Sn, Pb, Sb, Bi, Po и др., а также большинство элементов Б-групп - Cr, Mn, Fe, Zn, Cd, Au и др. Амфотерные оксиды называют так же, как и основные, например:

Амфотерные гидроксиды (если степень окисления элемента превышает + II) могут находиться в орто - или (и) мета - форме.

Примеры амфотерных гидроксидов:

Амфотерным оксидам не всегда соответствуют амфотерные гидроксиды, поскольку при попытке получения последних образуются гидратированные оксиды, например:

Если амфотерному элементу в соединениях отвечает несколько степеней окисления, то амфотерность соответствующих оксидов и гидроксидов (а следовательно, и амфотерность самого элемента) будет выражена по-разному. Для низких степеней окисления у гидроксидов и оксидов наблюдается преобладание основных свойств, а у самого элемента - металлических свойств, поэтому он почти всегда входит в состав катионов. Для высоких степеней окисления, напротив, у гидроксидов и оксидов наблюдается преобладание кислотных свойств, а у самого элемента - неметаллических свойств, поэтому он почти всегда входит в состав анионов.

Оксиды – соединения элементов с кислородом, степень окисления кислорода в оксидах всегда равна -2.

Оснóвные оксиды образуют типичные металлы со С.О. +1,+2 (Li 2 O, MgO, СаО,CuO и др.).

Кислотные оксиды образуют неметаллы со С.О. более +2 и металлы со С.О. от +5 до +7 (SO 2 , SeO 2 , Р 2 O 5 , As 2 O 3 , СO 2 ,SiO 2 , CrO 3 и Mn 2 O 7). Исключение: у оксидов NO 2 и ClO 2 нет соответствующих кислотных гидроксидов, но их считают кислотными.

Амфотерные оксиды образованы амфотерными металлами со С.О. +2,+3,+4 (BeO, Cr 2 O 3 , ZnO, Al 2 O 3 , GeO 2 , SnO 2 и РЬО).

Несолеобразующие оксиды – оксиды неметаллов со С.О.+1,+2 (СО, NO, N 2 O, SiO).

Основания (осно́вные гидрокси́ды ) - сложные вещества, которые состоят из иона металла (или иона аммония) и гидроксогруппы (-OH).

Кислотные гидроксиды (кислоты) — сложные вещества, которые состоят из атомов водорода и кислотного остатка.

Амфотерные гидроксиды образованы элементами с амфотерными свойствами.

Соли – сложные вещества, образованные атомами металлов, соединёнными с кислотными остатками.

Средние (нормальные) соли - все атомы водорода в молекулах кислоты замещены на атомы металла.

Кислые соли - атомы водорода в кислоте замещены атомами металла частично. Они получаются при нейтрализации основания избытком кислоты. Чтобы правильно назвать кислую соль, необходимо к названию нормальной соли прибавить приставку гидро- или дигидро- в зависимости от числа атомов водорода, входящих в состав кислой соли.

Например, KHCO 3 – гидрокарбонат калия, КH 2 PO 4 – дигидроортофосфат калия

Нужно помнить, что кислые соли могут образовывать только двух и более основные кислоты.

Осно́вные соли - гидроксогруппы основания (OH −) частично замещены кислотными остатками. Чтобы назвать основную соль, необходимо к названию нормальной соли прибавить приставку гидроксо- или дигидроксо- в зависимости от числа ОН — групп, входящих в состав соли.

Например, (CuOH) 2 CO 3 — гидроксокарбонат меди (II).

Нужно помнить, что основные соли способны образовывать лишь основания, содержащие в своём составе две и более гидроксогрупп.

Двойные соли - в их составе присутствует два различных катиона, получаются кристаллизацией из смешанного раствора солей с разными катионами, но одинаковыми анионами. Например,KAl(SO 4) 2 , KNaSO 4.

Смешанные соли - в их составе присутствует два различных аниона. Например, Ca(OCl)Cl.

Гидратные соли (кристаллогидраты ) - в их состав входят молекулы кристаллизационной воды. Пример: Na 2 SO 4 ·10H 2 O.

Тривиальные названия часто употребляемых неорганических веществ:

Формула Тривиальное название
NaCl галит, каменная соль, поваренная соль
Na 2 SO 4 *10H 2 O глауберова соль
NaNO 3 Натриевая, чилийская селитра
NaOH едкий натр, каустик, каустическая сода
Na 2 CO 3 *10H 2 O кристаллическая сода
Na 2 CO 3 Кальцинированная сода
NaHCO 3 пищевая (питьевая) сода
K 2 CO 3 поташ
КОН едкое кали
KCl калийная соль, сильвин
KClO 3 бертолетова соль
KNO 3 Калийная, индийская селитра
K 3 красная кровяная соль
K 4 желтая кровяная соль
KFe 3+ берлинская лазурь
KFe 2+ турнбулева синь
NH 4 Cl Нашатырь
NH 3 *H 2 O нашатырный спирт, аммиачная вода
(NH 4) 2 Fe(SO 4) 2 соль Мора
СаO негашеная (жженая) известь
Са(OH) 2 гашеная известь, известковая вода, известковое молоко, известковое тесто
СaSO 4 *2H 2 O Гипс
CaCO 3 мрамор, известняк, мел, кальцит
СаНРO 4 × 2H 2 O Преципитат
Са(Н 2 РO 4) 2 двойной суперфосфат
Са(Н 2 РO 4) 2 +2СаSO 4 простой суперфосфат
CaOCl 2 (Ca(OCl) 2 + CaCl 2) хлорная известь
MgO жженая магнезия
MgSO 4 *7H 2 O английская (горькая) соль
Al 2 O 3 корунд, боксит, глинозем, рубин, сапфир
C алмаз, графит, сажа, уголь, кокс
AgNO 3 ляпис
(CuОН) 2 СO 3 малахит
Cu 2 S медный блеск, халькозин
CuSO 4 *5H 2 O медный купорос
FeSO 4 *7H 2 O железный купорос
FeS 2 пирит, железный колчедан, серный колчедан
FeСО 3 сидерит
Fe 2 О 3 красный железняк, гематит
Fe 3 О 4 магнитный железняк, магнетит
FeО × nH 2 О бурый железняк, лимонит
H 2 SO 4 × nSO 3 олеум раствор SO 3 в H 2 SO 4
N 2 O веселящий газ
NO 2 бурый газ, лисий хвост
SO 3 серный газ, серный ангидрид
SO 2 сернистый газ, сернистый ангидрид
CO угарный газ
CO 2 углекислый газ, сухой лед, углекислота
SiO 2 кремнезем, кварц, речной песок
CO + H 2 водяной газ, синтез-газ
Pb(CH 3 COO) 2 свинцовый сахар
PbS свинцовый блеск, галенит
ZnS цинковая обманка, сфалерит
HgCl 2 сулема
HgS киноварь

Классификация неорганических веществ основана на их способности к разложению. Простые вещества, состоящие из атомов только одного химического элемента (O 2 , H 2 , Mg), не распадаются. Легко разлагаются сложные вещества, состоящие из атомов двух и более элементов (CO 2 , H 2 SO 4 , NaOH, KCl).

Простые

Классификация классов неорганических веществ включает:

  • металлы - элементы, обладающие тепло- и электропроводностью, высокой пластичностью, ковкостью, металлическим блеском;
  • неметаллы - более хрупкие, чем металлы, элементы, не обладающие электропроводностью и проявляющие окислительные свойства.

Рис. 1. Схема классификации неорганических веществ.

Металлы расположены в нижнем левом углу периодической таблицы, неметаллы - в правом верхнем углу и включают благородные газы.

Рис. 2. Расположение металлов и неметаллов в таблице Менделеева.

Многие простые химические элементы обладают аллотропией - свойством образовывать несколько простых веществ. Например, при присоединении ещё одного атома к кислороду образуется простое вещество озон (О 3), углерод в зависимости от количества атомов образует графит, уголь или алмаз.

Сложные

Сложные вещества классифицируют на следующие классы:

  • оксиды - состоят из двух элементов, один из которых является кислородом;
  • кислоты - состоят из атомов водорода и кислотного остатка;
  • основания - состоят из металла и одной или нескольких гидроксильных групп;
  • соли - состоят из металла и кислотного остатка.

Отдельно выделяют амфотерные гидроксиды, которые проявляют свойства кислот и оснований. Это твёрдые вещества, являющиеся слабыми электролитами. К ним относятся гидроксиды металлов со степенью окисления +3 и +4. Исключениями являются Be(OH) 2 , Zn(OH) 2 , Sn(OH) 2 , Pb(OH) 2 .

Более подробная классификация сложных веществ представлена в таблице с примерами.

Вид

Номенклатура

Химические свойства

Пример

Оксиды - Е х О у

Оксид элемента (степень окисления)

Выделяют основные оксиды, которые при взаимодействии с кислотами образуют соли, и кислотные оксиды, образующие при взаимодействии с основаниями кислоты. Отдельно выделяют амфотерные оксиды, взаимодействующие с кислотами и основаниями (образуется соль)

Na 2 O - оксид натрия, Fe 2 O 3 - оксид железа (III), N 2 O 5 - оксид азота (V)

Основания - Ме(ОН) х

Гидроксид металла (степень окисления)

В соответствии с растворимостью выделяют щёлочи и нерастворимые в воде основания. Щёлочи взаимодействуют с неметаллами и кислотными оксидами. Нерастворимые основания взаимодействуют с кислотами и способны разлагаться при высоких температурах

Fe(OH) 2 - гидроксид железа (II), Cu(OH) 2 - гидроксид меди (II), NaOH - гидроксид натрия

Кислоты - H n Ac

Читается в зависимости от кислотного остатка

Взаимодействуют с металлами, стоящими левее водорода в ряде активности, с оксидами, солями. Способны разлагаться при высоких температурах

H 2 SO 4 - серная кислота, HCl - соляная кислота, HNO 3 - азотная кислота

Соли - Ме х (Ас) у

Кислотный остаток металла (степень окисления)

Реагируют с кислотами, щелочами, металлами и солями

Na 2 SO 4 - сульфат натрия, CaCO 3 - карбонат кальция, KCl - хлорид калия

Рис. 3. Список названий кислот.

Генетические связи между классами основаны на взаимном превращении веществ. При химических реакциях атомы переходят от одного вещества к другому, образуя генетические ряды (ряды превращений). Металл при присоединении кислорода образует оксид, который при взаимодействии с водой превращается в основание. Из неметалла образуется кислотный оксид, который, взаимодействуя с водой, образует кислоту. Любой генетический ряд заканчивается солью.

Что мы узнали?

Неорганические вещества включают простые и сложные соединения. Простые вещества состоят из атомов одного и того же элемента. К ним относятся металлы и неметаллы. Сложные соединения включают вещества, состоящие из нескольких элементов. К ним относятся оксиды, кислоты, основания, соли и амфотерные гидроксиды. Все вещества генетически связаны между собой. Из простого вещества можно получить более сложное вещество. Наиболее сложными веществами считаются соли.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 102.

На данный момент определено более пятисот тысяч неорганических соединений. Классификация и номенклатура неорганических веществ - важный вопрос, позволяющий разбираться в многообразии соединений.

Историческая справка

В XVIII-XIX веках Антуаном Лавуазье, Михаилом Ломоносовым, Джоном Дальтоном была предложена первая классификация и номенклатура неорганических веществ. Выделялись простые и Первую группу делили на металлы и неметаллы. Также выделяли группу соединений, которые имели промежуточные свойства, называемые металлоидами. Это деление легло в основу современной классификации.

На данный момент выделяют четыре класса. Рассмотрим подробнее каждый из этих классов.

Оксиды

Ими являются многоатомные соединения, которые состоят из двух элементов, вторым в них всегда находится ион кислорода в степени окисления -2. Классификация и номенклатура неорганических веществ предполагает подразделение класса оксидов на три группы:

  • основные;
  • амфотерные;
  • кислотные

Классификация

Первую группу составляют соединения металлов (с минимальными показателями степеней окисления) с кислородом. Например, MgO - оксид магния. Среди основных химических свойств этого соединения можно отметить их взаимодействие с кислотными оксидами, кислотами, более активными металлами.

Кислородные соединения неметаллов, а также металлических элементов с значениями степеней окисления от +4 до +7. К примеру, в данную группу входит MnO 2 , CO 2 . Среди типичных выделим взаимодействие с водой (образуется слабая угольная кислота), основными оксидами, растворимыми основаниями (щелочами).

Амфотерными (переходными) оксидами называют соединения металлов со степенью окисления +3 (а также оксида бериллия, цинка), которые способны взаимодействовать и с кислотами, и со щелочами.

Оксиды подразделяют на солеобразующие и несолеобразующие. Первая группа соответствует кислотам или основаниям, в которых у основного элемента сохраняется степень окисления. Несолеобразующая группа малочисленна, ее представители не способны образовывать солей. Например, среди несолеобразующих оксидов выделяют: N 2 O, NO, SiO, CO.

Гидроксиды

Классификация и номенклатура неорганических веществ предполагает выделение класса гидроксидов. Ими называют сложные вещества, в составе которых есть атомы какого-то элемента, а также гидроксильные группы ОН. Этот класс подразделяют на две большие группы:

  • основания;
  • кислоты

Кислоты имеют в составе несколько водородных атомов, способные замещаться атомами металла при соблюдении правил стехиометрической валентности. Многие находятся в мета-форме, а атомы водорода в них располагаются в начале формулы. Они имеют общий вид НхЕОу, где вторая часть называется кислотным остатком. Классификация и их номенклатура рассматривается в рамках школьного курса химии. К серной кислоты - сульфаты, азотной кислоты - нитраты, угольной кислоты - карбонаты.

В зависимости от количества атомов водорода, выделяют следующие группы:

  • одноосновные;
  • двухосновные;
  • трехосновные кислоты

Основания в своем составе содержат катионы металла и ОН, способных в химических реакциях замещаться на остатки кислот при соблюдении правил стехиометрической валентности.

Основания находятся в орто-форме, имеют общую формулу М(ОН)n, причем n = 1или 2. При названии соединений этой группы к гидроксиду добавляют соответствующий металл.

Среди основных химических свойств, которыми обладают представители данного касса неорганических веществ, необходимо отметить их реакцию с кислотами, продуктами реакции является вода и соль.

Например, в реакции гидроксида натрия с соляной кислотой продуктами будет вода и хлорид натрия.

В зависимости от растворимости в воде, выделяют растворимые основания (щелочи) и нерастворимые гидроксиды. К первой группе относятся гидроксильные соединения металлов первой и второй групп главных подгрупп (щелочные и щелочноземельные металлы).

Например, NaOH - щелочь (гидроксид натрия); Fe(OH) 2 - гидроксид железа II (нерастворимое соединение).

Соли

Что еще включает в себя классификация и номенклатура неорганических веществ? Задания для учеников 8-9 классов предполагают разделение предлагаемого перечня соединений на отдельные классы: оксиды, основания, кислоты, соли.

Соли - это сложные вещества, в которых присутствуют катионы металла и анионы кислотного остатка. Средние соли имеют общую формулу Мх(ЕОу) n . Примером этой группы является Ca 3 (PO 4) 2 - фосфат кальция.

Если в составе появляются и катионы водорода, соли называют кислыми, а присутствие гидроксильных групп характерно для основных солей. К примеру, NaHCO 3 - гидрокарбонат натрия, а CaOHCl- гидроксохлорид кальция.

Те соли, в составе которых присутствуют катионы двух разных металлов, их называют двойными.

Комплексные соли - сложные соединения, в составе которых есть комплексообразователь и лиганды. В старшей школе рассматривается классификация и номенклатура неорганических веществ. Теория комплексных соединений изучается в рамках профильного курса общей химии. Вопросы, касающиеся номенклатуры и химических свойств комплексных солей, не включаются в тестовые вопросы единого государственного экзамена по химии за курс средней школы.

Заключение

Как используется в школьной программе классификация и номенклатура неорганических веществ? Кратко группы веществ рассматриваются в рамках программы восьмого и девятого класса, а более подробно их изучают в курсе общей химии 11 класса. Задания, касающиеся классификации неорганических соединений, сопоставления химических свойств соединений с предлагаемыми продуктами, включены в тесты итоговой аттестации по химии (ЕГЭ) для выпускников одиннадцатого класса. Для того чтобы успешно с ними справиться, ученики должны владеть базовыми знаниями по классификации неорганических соединений, навыками сопоставления предлагаемых веществ с химическими свойствами всего класса.