Суммарное уравнение гликолиза. Гликолиз глюкозы и высвобождение энергии. Цикл лимонной кислоты или цикл Кребса Суммарный выход гликолиза

Гликолиз (от греч. glycus - сладкий и lysis - растворение, распад) - сложный ферментативный процесс превращения глюкозы, протекающий в тканях человека и животных без потребления кислорода. Конечным продуктом гликолиза является молочная кислота. В процессе гликолиза образуется также АТФ. Суммарное уравнение гликолиза можно изобразить следующим образом:

В анаэробных условиях гликолиз - единственный процесс в животном организме, поставляющий энергию. Именно благодаря процессу гликолиза организм человека и животных определенный период времени может осуществлять ряд физиологических функций в условиях недостаточности кислорода. В тех случаях, когда гликолиз протекает в присутствии кислорода, говорят об аэробном гликолизе. (В аэробных условиях гликолиз можно рассматривать как первую стадию окисления глюкозы до конечных продуктов этого процесса - углекислоты и воды. )

Впервые термин «гликолиз» применил Лепин в 1890 г. для обозначения процесса убыли глюкозы в крови, изъятой из кровеносной системы, т. е. in vitro.

У ряда микроорганизмов процессами, аналогичными гликолизу, являются различные виды брожения .

Последовательность реакций гликолиза, так же как и их промежуточные продукты, хорошо изучена. Процесс гликолиза катализируется одиннадцатью ферментами, большинство из которых выделено в гомогенном, кристаллическом или высокоочищенном виде и свойства которых достаточно изучены. Заметим, что гликолиз протекает в гиалоплазме клетки. В табл. 27 приведены данные относительно скорости анаэробного гликолиза в различных тканях крысы.

Первой ферментативной реакцией гликолиза является фосфорилирование, т. е. перенос остатка ортофосфата на глюкозу за счет АТФ. Реакция катализируется ферментом гексокиназой:

Образование глюкозо-6-фосфата в гексокиназной реакции связано с освобождением значительного количества свободной энергии системы и может считаться практически необратимым процессом.

Фермент гексокиназа способен катализировать фосфорилирование не только D-глюкозы, но и других гексоз, в частности D-фруктозы, D-маннозы и др.

Второй реакцией гликолиза является превращение глюкозо-6-фосфата под действием фермента гексозофосфатизомеразы во фруктозо-6-фосфат:

Эта реакция протекает легко в обоих направлениях и не нуждается в присутствии каких-либо кофакторов.

В третьей реакции образовавшийся фруктозо-6-фосфат вновь фосфорилируется за счет второй молекулы АТФ. Реакция катализируется ферментом фосфофруктокиназой:

Данная реакция аналогично гексокиназной практически необратима, протекает она в присутствии ионов магния и является наиболее медленно текущей реакцией гликолиза. Фактически эта реакция определяет скорость гликолиза в целом.

Фосфофруктокиназа относится к числу аллостерических ферментов. Она ингибируется АТФ и стимулируется АДФ и АМФ. (Активность фосфофруктокиназы ингибируется также цитратом. Показано, что при диабете, голодании и некоторых других состояниях, когда интенсивно используются жиры как источник энергии, в клетках тканей содержание цитрата может возрастать в несколько раз. В этих условиях происходит резкое торможение активности фосфофруктокиназы цитратом. ). При значительных величинах отношения АТФ/АДФ (что достигается в процессе окислительного фосфорилирования) активность фосфофруктокиназы угнетается и гликолиз замедляется. Напротив, при снижении этого коэффициента интенсивность гликолиза повышается. Так, в неработающей мышце активность фосфофруктокиназы низкая, а концентрация АТФ относительно высокая. Во время работы мышцы происходит интенсивное потребление АТФ и активность фосфофруктокиназы повышается, что приводит к усилению процесса гликолиза.

Четвертую реакцию гликолиза катализирует фермент альдолаза. Под влиянием этого фермента фруктозо-1,6-дифосфат расщепляется на две фосфотриозы:

Эта реакция обратима. В зависимости от температуры равновесие устанавливается на различном уровне. В целом же при повышении температуры реакция сдвигается в сторону большего образования триозофосфатов (диоксиацетонфосфата и глицеральдегид-3-фосфата).

Пятая реакция - реакция изомеризации триозофосфатов. Катализируется эта реакция ферментом триозофосфатизомеразой:

Равновесие данной изомеразной реакции сдвинуто в сторону дигидроксиацетонфосфата: 95% дигидроксиацетонфосфата и около 5% глицеральдегид-3-фосфата. Однако в последующие реакции гликолиза может непосредственно включаться только один из двух образующихся триозофосфатов, а именно глицеральдегид-3-фосфат. Вследствие этого по мере потребления в ходе дальнейших превращений альдегидной формы фосфотриозы дигидроксиацетонфосфат превращается в глицеральдегид-3-фосфат.

Образованием глицеральдегид-3-фосфата как бы завершается первая стадия гликолиза. Вторая стадия - наиболее сложная и важная часть гликолиза. Она включает окислительно-восстановительную реакцию (гликолитическую оксидоредукцию), сопряженную с субстратным фосфорилированием, в процессе которого образуется АТФ.

В шестой реакции глицеральдегид-3-фосфат в присутствии фермента глицеральдегидфосфатдегидрогеназы (дегидрогеназой 3-фосфоглицеринового альдегида ), кофермента НАД и неорганического фосфата подвергается своеобразному окислению с образованием 1,3-дифосфоглицериновой кислоты и восстановленной формы НАД (НАДН 2). Эта реакция блокируется йод- или бромацетатом, протекает она в несколько этапов. Суммарно данную реакцию можно изобразить в следующем виде:

1,3-Дифосфоглицериновая кислота представляет собой высокоэнергетическое соединение. Механизм действия глицеральдегид-фосфатдегидрогеназы сводится к следующему: в присутствии неорганического фосфата НАД выступает как акцептор водорода, отщепляющегося от глицеральдегид-3-фосфата. В процессе образования НАДН 2 глицеральдегид-3-фосфат связывается с молекулой фермента за счет SH-групп последнего. Образовавшаяся связь богата энергией, но она непрочна и расщепляется под влиянием неорганического фосфата. При этом образуется 1,3-дифосфоглицериновая кислота.

В седьмой реакции, которая катализируется фосфоглицераткиназой, происходит передача богатой энергией фосфатного остатка (фосфатной группы в положении 1) на АДФ с образованием АТФ и 3-фосфоглицериновой кислоты (3-фосфоглицерата):

Таким образом, благодаря действию двух ферментов (глицеральдегидфосфатдегидрогеназы и фосфоглицераткиназы) энергия, высвобождающаяся при окислении альдегидной группы глицеральдегид-3-фосфата до карбоксильной группы, запасается в форме энергии АТФ.

В восьмой реакции происходит внутримолекулярный перенос оставшейся фосфатной группы и 3-фосфоглицериновая кислота превращается в 2-фосфоглицериновую кислоту (2-фосфоглицерат).

Реакция легкообратима, протекает в присутствии ионов Mg 2+ . Кофактором фермента является также 2,3-дифосфоглицериновая кислота, аналогично тому, как в фосфоглюкомутазной реакции роль кофактора выполнялась глюкозо-1,6-дифосфатом:

В девятой реакции 2-фосфоглицериновая кислота в результате отщепления молекулы воды переходит в фосфоенолпировиноградную кислоту (фосфоенолпируват). При этом фосфатная связь в положении 2 становится высокоэргической. Реакция катализируется ферментом енолазой:

Енолаза активируется двухвалентными катионами Mg 2+ или Мn 2+ и ингибируется фторидом.

В десятой реакции происходят разрыв высокоэргической связи и перенос фосфатного остатка от фосфоенолпировиноградной кислоты на АДФ. Катализируется эта реакция ферментом пируваткиназой:

Для действия пируваткиназы необходимы Mg 2+ или Мn 2+ , а также одновалентные катионы щелочных металлов (К + или другие). Внутри клетки реакция является практически необратимой.

В одиннадцатой реакции в результате восстановления пировиноградной кислоты образуется молочная кислота. Реакция протекает при участии фермента лактатдегидрогеназы и кофермента НАДН 2+ :

В целом последовательность протекающих при гликолизе реакций может быть представлена в следующем виде (рис. 84).

Реакция восстановления пирувата завершает внутренний окислительно-восстановительный цикл гликолиза. При этом НАД здесь играет роль лишь промежуточного переносчика водорода от глицеральдегид-3-фосфата (шестая реакция) на пировиноградную кислоту (одиннадцатая реакция). Ниже схематично изображена реакция гликолитической оксидоредукции, а также указаны этапы, на которых происходит образование АТФ (рис. 85).

Биологическое значение процесса гликолиза прежде всего заключается в образовании богатых энергией фосфорных соединений. В первой стадии гликолиза затрачиваются две молекулы АТФ (гексокиназная и фосфофруктокиназная реакции). Во второй стадии образуются четыре молекулы АТФ (фосфоглицераткиназная и пируваткиназная реакции).

Таким образом, энергетическая эффективность гликолиза составляет две молекулы АТФ на одну молекулу глюкозы.

Известно, что изменение свободной энергии при расщеплении глюкозы до двух молекул молочной кислоты составляет около 210 кДж/моль:

Из этого количества энергии около 126 кДж рассеивается в виде тепла, а 84 кДж накапливаются в форме богатых энергией фосфатных связей АТФ. Концевая макроэргическая связь в молекуле АТФ соответствует примерно 33,6-42,0 кДж/моль. Таким образом, коэффициент полезного действия анаэробного гликолиза составляет около 0,4.

Величины изменения свободной энергии точно определены для отдельных реакций гликолиза в интактных эритроцитах человека. Установлено, что восемь реакций гликолиза близки к равновесию, а три реакции (гексокиназная, фосфофруктокиназная, пируваткиназная) далеки от него, поскольку они сопровождаются значительным уменьшением свободной энергии, т. е. практически являются необратимыми.

Как уже отмечалось, основной лимитирующей скорость гликолиза реакцией является реакция, катализируемая фосфофруктокиназой. Вторым этапом, лимитирующим скорость и регулирующим гликолиз, служит гексокиназная реакция. Кроме того, контроль гликолиза осуществляется также лактатдегидрогеназой (ЛДГ) и ее изоферментами. В тканях с аэробным метаболизмом (ткани сердца, почек и др.) преобладают изоферменты ЛДГ 1 и ЛДГ 2 . Эти изоферменты ингибируются даже небольшими концентрациями пирувата, что препятствует образованию молочной кислоты и способствует более полному окислению пирувата (точнее, ацетил-КоА) в цикле трикарбоновых кислот.

В тканях человека, в значительной степени зависящих от энергии, образующейся в процессе гликолиза (например, скелетные мышцы), главными изоферментами являются ЛДГ 5 и ЛДГ 4 . Активность ЛДГ 5 максимальна при тех концентрациях пирувата, которые ингибируют ЛДГ 1 . Преобладание изоферментов ЛДГ 4 и ЛДГ 5 обусловливает интенсивный анаэробный гликолиз с быстрым превращением пирувата в молочную кислоту.

Включение других углеводов в процесс гликолиза

Эффект Пастера

Снижение скорости потребления глюкозы и прекращение накопления лактата в присутствии кислорода носит название эффекта Пастера. Впервые это явление наблюдал Л. Пастер во время своих широко известных исследований, касающихся роли брожения в производстве вина. В дальнейшем было показано, что эффект Пастера наблюдается также в животных и растительных тканях, где O 2 тормозит анаэробный гликолиз. Значение эффекта Пастера, т. е. перехода в присутствии O 2 от анаэробного гликолиза или брожения к дыханию, состоит в переключении клетки на более экономный путь получения энергии. В результате скорость потребления субстрата, например глюкозы, в присутствии O 2 снижается. Молекулярный механизм эффекта Пастера заключается, по-видимому, в конкуренции между системами дыхания и гликолиза (брожения) за аденозиндифосфат (АДФ), используемый для образования аденозинтрифосфата (АТФ). Как мы уже знаем, в аэробных условиях значительно эффективнее, чем в анаэробных, происходят удаление Ф н и АДФ, генерация АТФ, а также удаление восстановленного НАД (НАДН 2). Иными словами, уменьшение в присутствии кислорода количества Ф н и АДФ и соответствующее увеличение количества АТФ ведут к подавлению анаэробного гликолиза.

Гликогенолиз

Процесс анаэробного распада гликогена получил название гликогенолиза. Вовлечение D-глюкозных единиц гликогена в процесс гликолиза происходит при участии трех ферментов - гликогенфосфорилазы,(или фосфорилазы «а»), амило-1,6-глюкозидазы и фосфоглюкомутазы.

Образовавшийся в ходе фосфоглюкомутазной реакции глюкозо-6-фосфат может включаться в процесс гликолиза. После образования глюкозо-6-фосфата дальнейшие пути гликолиза и гликогенолиза полностью совпадают:

В процессе гликогенолиза в виде макроэргических соединений накапливаются не две, а три молекулы АТФ (не тратится АТФ на образование глюкозо-6-фосфата). На первый взгляд, энергетически эффективность гликогенолиза может считаться несколько более высокой по сравнению с процессом гликолиза. Однако надо иметь в виду, что в процессе синтеза гликогена в тканях расходуется АТФ, поэтому в энергетическом плане гликогенолиз и гликолиз практически равноценны.

В анаэробном процессе пировиноградная кислота восстанавливается до молочной кислоты (лактата), поэтому в микробиологии анаэробный гликолиз называют молочнокислым брожением. Лактат далее ни во что не превращается, единственная возможность утилизовать лактат – это окислить его обратно в пируват.

Многие клетки организма способны к анаэробному окислению глюкозы. Для эритроцитов он является единственным источником энергии. Клетки скелетной мускулатуры за счет бескислородного расщепления глюкозы способны выполнять мощную, быструю, интенсивную работу, как, например, бег на короткие дистанции, напряжение в силовых видах спорта. Вне физических нагрузок бескислородное окисление глюкозы в клетках усиливается при гипоксии – при различного рода анемиях , при нарушении кровообращения в тканях независимо от причины.

Гликолиз

Анаэробное превращение глюкозы локализуется в цитозоле и включает два этапа из 11 ферментативных реакций.

Первый этап гликолиза

Первый этап гликолиза – подготовительный , здесь происходит затрата энергии АТФ, активация глюкозы и образование из нее триозофосфатов .

Первая реакция гликолиза сводится к превращению глюкозы в реакционно-способное соединение за счет фосфорилирования 6-го, не включенного в кольцо, атома углерода. Эта реакция является первой в любом превращении глюкозы, катализируется гексокиназой .

Вторая реакция необходима для выведения еще одного атома углерода из кольца для его последующего фосфорилирования (фермент глюкозофосфат-изомераза ). В результате образуется фруктозо-6-фосфат.

Третья реакция – фермент фосфофруктокиназа фосфорилирует фруктозо-6-фосфат с образованием почти симметричной молекулы фруктозо-1,6-дифосфата. Эта реакция является главной в регуляции скорости гликолиза.

В четвертой реакции фруктозо-1,6-дифосфат разрезается пополам фруктозо-1,6-дифосфат- альдолазой с образованием двух фосфорилированных триоз-изомеров – альдозы глицеральдегида (ГАФ) и кетозы диоксиацетона (ДАФ).

Пятая реакция подготовительного этапа – переход глицеральдегидфосфата и диоксиацетонфосфата друг в друга при участии триозофосфатизомеразы . Равновесие реакции сдвинуто в пользу диоксиацетонфосфата, его доля составляет 97%, доля глицеральдегидфосфата – 3%. Эта реакция, при всей ее простоте, определяет дальнейшую судьбу глюкозы:

  • при нехватке энергии в клетке и активации окисления глюкозы диоксиацетонфосфат превращается в глицеральдегидфосфат, который далее окисляется на втором этапе гликолиза,
  • при достаточном количестве АТФ, наоборот, глицеральдегидфосфат изомеризуется в диоксиацетонфосфат, и последний отправляется на синтез жиров.

Второй этап гликолиза

Второй этап гликолиза – это освобождение энергии , содержащейся в глицеральдегидфосфате, и запасание ее в форме АТФ .

Шестая реакция гликолиза (фермент глицеральдегидфосфат-дегидрогеназа ) – окисление глицеральдегидфосфата и присоединение к нему фосфорной кислоты приводит к образованию макроэргического соединения 1,3-дифосфоглицериновой кислоты и НАДН.

В седьмой реакции (фермент фосфоглицераткиназа ) энергия фосфоэфирной связи, заключенная в 1,3-дифосфоглицерате тратится на образование АТФ. Реакция получила дополнительное название – , что уточняет источник энергии для получения макроэргической связи в АТФ (от субстрата реакции) в отличие от окислительного фосфорилирования (использование энергии электрохимического градиента ионов водорода на мембране митохондрий).

Восьмая реакция – синтезированный в предыдущей реакции 3-фосфоглицерат под влиянием фосфоглицератмутазы изомеризуется в 2-фосфоглицерат.

Девятая реакция – фермент енолаза отрывает молекулу воды от 2-фосфоглицериновой кислоты и приводит к образованию макроэргической фосфоэфирной связи в составе фосфоенолпирувата.

Десятая реакция гликолиза – еще одна реакция субстратного фосфорилирования – заключается в переносе пируваткиназой макроэргического фосфата с фосфоенолпирувата на АДФ и образовании пировиноградной кислоты.

Последняя реакция бескислородного окисления глюкозы, одиннадцатая – образование молочной кислоты из пирувата под действием лактатдегидрогеназы . Важно то, что эта реакция осуществляется только в анаэробных условиях. Эта реакция необходима клетке, так как НАДН, образующийся в 6-й реакции, в отсутствие кислорода не может окисляться в митохондриях.

Так было впервые установлено, что брожение может происходить вне живых клеток . В году Эдуард Бюхнер была присуждена Нобелевская премия по химии .

Со времени открытия внеклеточного брожения до 1940-х годов исследования реакций гликолиза было одной из основных задач биохимии . Описанием этого метаболического пути в клетках дрожжей занимались Отто Варбург , Ганс фон Эйлер-Хельпин и Артур Гарден (два последних получили Нобелевскую премию по химии 1929 ), в мышцах - Густав Эмбдена и Отто Меергоф (Нобелевская премия по медицине и физиологии 1922 ). Также свой вклад в исследование гликолиза сделали Карл Нойберг, Яков Парнас , Герти и Карл Кори .

Важными "побочными" открытиями, сделанными благодаря изучению гликолиза, была разработка многих методов очистки ферментов , выяснения центральной роли АТФ и других фосфорилированных соединений в метаболизме , открытие коэнзимов , таких как НАД .


2. Распространение и значение

Другими путями окисления глюкозы является пентозофосфатный путь и путь Ентнера-Дудорова . Последний является заменой гликолиза в некоторых грамотрицательных и, очень редко, грамположительных бактерий и имеет много общих черт с ним ферментов .


3. Реакции гликолиза

Традиционно гликолиз разделяют на две стадии: подготовительную, предусматривающий вклад энергии (пять первых реакций), и стадию отдачи энергии (пять последних реакций) . Иногда четвертую и пятую реакции выделяют в отдельную промежуточную стадию .

На первой стадии происходит фосфорилирование глюкозы в шестом положении, изомеризация полученного глюкозо-6-фосфата к фруктозо-6-фосфата, и повторное фосфорилирования уже в первом положении, в результате чего образуется фруктозо-1 ,6-бисфосфат. Фосфатные группы на моносахариды переносятся из АТФ . Это необходимо для активации молекул - увеличение содержания в них свободной энергии . Далее фруктозо-1 ,6-бисфосфат расщепляется до двух фосфотриоз, которые могут свободно превращаться друг в друга.

На второй стадии (отдачи энергии) фосфотриоза (глицеральдегид-3-фосфат) окисляется и фосфорилируется неорганическим фосфатом . Полученный продукт в серии екзергоничних реакций сопряженных с синтезом четырех молекул АТФ превращается в пирувата. Таким образом, при гликолиза происходит три принципиальных преобразования:


3.1. Первая стадия

3.1.1. Фосфорилирования глюкозы

Первая реакция гликолиза - фосфорилирование глюкозы с образованием глюкозо-6-фосфата, катализируемой ферментом гексокиназой . Донором фосфатной группы является молекула АТФ . Реакция происходит только в присутствии ионов Mg 2 + , так как настоящим субстратом для гексокиназы является не АТФ 4 -, а комплекс MgАТФ 2 -. Магний экранирует отрицательный заряд фосфатной группы, таким образом облегчая осуществление нуклеофильной атаки на последний атом фосфора гидроксильной группой глюкозы .

Вследствие фосфорилирования происходит не только активация молекулы глюкозы , но и ее "заключения" внутри клетки : плазматическая мембрана имеет белки-переносчики для глюкозы, но не для ее фосфорилированной формы. Поэтому большая заряженная молекула глюкозо-6-фосфата не может проникнуть через мембрану несмотря на то, что его концентрация в цитоплазме больше, чем во внеклеточной жидкости .


3.1.2. Изомеризация глюкозо-6-фосфата

Во второй реакции гликолиза происходит изомеризация глюкозо-6-фосфата к фруктозо-6-фосфата под действием фермента глюкозофосфатизомеразы (гексозофосфатизомеразы). Сначала происходит открытие шестичленного пиранозного кольца глюкозо-6-фосфата, т.е. переход этого вещества в линейную форму, после чего карбонильная группа из первого положения переносится во второй через промежуточную ендиольну форму . Есть альдозы превращается в кетоза. Образована линейная молекула фруктозо-6-фосфата замыкается в пятичленные фуранозне кольцо .

Через незначительное изменение свободной энергии реакция является обратимой. Изомеризация глюкозо-6-фосфата - это необходимое условие для дальнейшего прохождения гликолиза, поскольку следующая реакция - еще одно фосфорилирования, требует наличия гидроксильной группы в первом положении .


3.1.3. Фосфорилирования фруктозо-6-фосфата

После стадии изомеризации идет вторая реакция фосфорилирования , в которой фруктозо-6-фосфат превращается в фруктозо-1 ,6-бисфосфат за счет присоединения фосфатной группы АТФ . Реакцию катализирует фермент фосфофруктокиназы-1 (сокращенно ФФК-1, существует также фермент ФФК-2, катализирует образование фруктозо-2 ,6-бисфосфат в другом метаболическом пути) .

В условиях цитоплазмы клетки эта реакция является необратимой. Она первой достоверно определяет расщепление веществ по гилколитичному пути, поскольку глюкозо-6-фосфат и фруктозо-6-фосфат могут вступать в другие метаболические превращения, а фруктозо-1 ,6-бисфосфат используется только в гликолизе. Именно образование фруктозо-1 ,6-бисфосфат является лимитирующим стадией гликолиза .

У растений, некоторых бактерий и простейших также форма фосфофруктокиназы, использующий в качестве донора фосфатной группы пирофосфат , а не АТФ . ФФК-1 как алостеричний фермент подлежит сложным механизмам регулирования. К положительным модуляторов относятся продукты расщепления АТФ - АДФ и АМФ , рибулозо-5-фосфат (промежуточный продукт пентозофосфатного пути), у некоторых организмов фруктозо-2 ,6-бисфосфат. Негативным модулятором является АТФ .


3.1.4. Расщепление фруктозо-1 ,6-бисфосфат на две фосфотриозы

Фруктозо-1 ,6-бисфосфат расщепляется до двух фосфотриоз: глицеральдегид-3-фосфат и дигидроксиацетонфосфат под влиянием фруктозо-1 ,6-фосфатальдолазы (чаще просто альдолаза). Название фермента альдолазы происходит от обратной реакции альдольной конденсации . Механизм прохождения реакции показан на схеме:

Описанный механизм реакции характерен только для альдолазы класса I, распространенной в клетках растений и животных. В клетках бактерий и грибов присутствует альдолаза класса II, которая катализирует реакцию другим путем .

Механизм реакции альдольной расщепление еще раз демонстрирует важность изомеризации во второй реакции гликолиза. При таком преобразованию подлежала альдозы (глюкоза), то образовалась бы одна двокарбонова и одна чотирикарбонова соединение, каждая из которых должна метаболизироваться собственным шялхом. Зато трикарбонови соединения образованы в результате расщепления кетозы (фруктозы) могут легко превращаться друг в друга .


3.1.5. Изомеризация фосфотриоз

В последующих реакциях гликолиза участвует только одна из фосфотриоз образованных из фруктозо-1 ,6-бисфосфат, а именно глицеральдегид-3-фосфат. Однако другой продукт - дигидроксиацетонфосфат - быстро и обратно может превращаться в глицеральдегид-3-фосфат (катализирует эту реакция триозофосфатизомеразы) .

Механизм реакции похож на Изомеризацию глюкозо-6-фосфата в фруктозо-6-фосфат. Равновесие реакции смещено в сторону образования дигидроксиацетонфосфату (96%), однако из-за постоянного использования глицеральдегид-3-фосфата все время происходит обратное преобразование .

После преобразования двух "половинок" глюкозы в глицеральдегид-3-фосфат атомы Карбона , происходящих от ее C-1, C-2 и C-3, становятся химически неотличимы от C-6, C-5 и C-4 соответственно. Эта реакция завершает подготовительную стадию гликолиза .


3.2. Вторая стадия

3.2.1. Окисления глицеральдегид-3-фосфата

Изменение свободной энергии при окисления глицеральдегид-3-фосфата и фосфорлиювання образованного 3-фосфоглицерату, если они происходят последовательно (сверху) и если они сопряжены благодаря ковалентной связыванию промежуточного продукта с ферментом (снизу).

Первой реакцией стадии отдачи энергии гликолиза является окисление глицеральдегид-3-фосфата с одновременным его фосфорилированием, что осуществляется ферментом глицеральдегид-3-фосфатдегидрогеназы. Альдегид превращается не в свободную кислоту , а в смешанный ангидрид с фосфатной кислотой (1,3-бисфосфоглицерат). Соединения такого типа - ацилфосфаты - имеют очень большую отрицательную смену свободной энергии гидролиза (ΔG 0 = -49,3 кДж / моль) .

Реакцию превращения глицеральдегид-3-фосфата до 1,3-бисфосфоглицерату можно рассматривать как два отдельных процесса: окисление альдегидной группы НАД + и присоединения фосфатной группы к образованной карбоновой кислоты . Первая реакция термодинамически выгодна (ΔG 0 = -50 кДж / моль), вторая наоборот невыгодна. Изменение свободной энергии для второй реакции почти такая же, только положительная. Если бы они происходили последовательно одна за другой, то вторая реакция требовала бы слишком большой энергии активации , чтобы протекать в условиях живой клетки с удовлетворительной скоростью. Но оба процессы сопряженными благодаря тому, что промежуточное соединение - 3-фосфоглицерат - ковалентно связана с остатком цистеина тиоестерним связью в активном центре фермента. Такой тип связи позволяет "законсервировать" часть энергии, выделяемой при окисления глицеральдегид-3-фосфата, и использовать ее для реакции с ортофосфатною кислотой .

Для прохождения этой стадии гликолиза необходимый кофермент НАД +. Его концентрация в клетке (менее 10 -5 М) значительно меньше, чем количество глюкозы, метаболизируется минуту. Поэтому в клетке постоянно происходит повторное окисления НАД + .


3.2.2. Перенос фосфатной группы 1,3-бисфосфоглицерату на АДФ

В следующей реакции большой запас энергии ацилфосфату используется для синтеза АТФ . Фермент фосфоглицераткиназа (название от обратной реакции) катализирует перенос фосфатной группы с 1,3-бисфосфоглицерату на АДФ , кроме АТФ продуктом реакции является 3-фосфоглицерат .

Шестая и седьмая реакции гликолиза сопряжены между собой и 1,3-бисфосфоглицерат является общим промежуточным продуктом. Первая из них сама по себе была бы ендергоничною, однако затраты энергии компенсируются второй - выражено екзергоничною . Суммарное уравнение этих двух процессов можно записать так:

Глицеральдегид-3-фосфат + АДФ + Ф н + НАД + → 3-фосфоглицерат + АТФ + НАДH (H +), ΔG 0 = -12,2 кДж / моль ;

Следует заметить, что для одной молекулы глюкозы эта реакция происходит дважды, поскольку из одной молекулы глюкозы были образованы две молекулы глицеральдегид-3-фосфата. Итак, на этом этапе синтезируются две молекулы АТФ , что покрывает энергетические затраты первой стадии гликолиза.


3.2.3. Изомеризация 3-фосфоглицерату

В восьмой реакции гликолиза фермент фосфоглицератмутаза в присутствии ионов Магния катализирует перенос фосфатной группы 3-фосфоглицерату с третьего положения в другое, в результате чего образуется 2-фосфоглицерат. Реакция происходит в два этапа: на первом из них фосфатная группа, изначально присоединена к остатку гистидина в активном центре фермента, переносится на C-2 3-фосфоглицерату, в результате чего образуется 2,3-бисфосфоглицерат. После этого фосфатная группа в третьем положении синтезированной соединения переносится на гистидин . Таким образом регенерируются фосфорилированный фермент и производится 2-фосфоглицерат .

Исходное фосфорилирования фосфоглицератмутазы осуществляется реакцией с 2,3-бисфосфоглицерату, незначительной концентрации которого достаточно для активации фермента .


3.2.4. Дегидратация 2-фосфоглицерату

Следующая реакция - образование Энола с результате дегидратации (отщепление воды) 2-фосфоглицерату - ведет к образованию фосфоенолпирувату (сокращенно ФЭП) и катализируется ферментом энолаза.

Это вторая реакция образования вещества с высоким потенциалом переноса фосфатной группы в процессе гликолиза. Изменение свободной энергии при гидролизе фосфатного эфира обычного спирта значительно ниже по сравнению с таким изменением при гидролизе енолфосфату, в частности для 2-фосфоглицерату ΔG 0 = -17,6 кДж / моль , а для фосфоенолпирувату ΔG 0 = -61,9 кДж / моль .


3.2.5. Перенос фосфатной группы с ФЭП на АДФ

Последняя реакция гликолиза - перенос фосфатной группы с фосфоенолпирувату на АДФ - катализируется пируваткиназы в присутствии ионов K + и Mg 2 + или Mn 2 + . Продуктом этой реакции является пируват , который сначала образуется в енольной форме, после чего быстро и неферментативно таутомеризуеться в кетонной форму .

Реакция имеет большую отрицательную смену свободной энергии , главным образом благодаря екзергоничому процесса таутомеризации . Около половины энергии (30,5 кДж / моль), выделяющегося при гидролизе ФЭП (61,9 кДж / моль), используется на субстратное фосфорилирование, остальные (31,5 кДж / моль) служит как движущая сила, толкающая реакцию в сторону образования пирувата и АТФ . Реакция является необратимой за клеточных условий .


4. Суммарный выход гликолиза

Изменение свободной энергии в реакциях гликолиза в эритроцитах
Реакция ΔG 0
(КДж / моль)
ΔG
(КДж / моль)
Глюкоза + АТФ → глюкозо-6-фосфат + АДФ -16,7 -33,4
Глюкозо-6-фосфат ↔ фруктозо-6-фосфат 1,7 от 0 до 25
Фруктозо-6-фосфат + АТФ → фруктозо-1 ,6-бисфосфат + АДФ -14,2 -22,2
Фруктозо-1 ,6-бисфосфат ↔ глицеральдегид-3-фосфат + дигидроксиацетонфосфат 28,3 от -6 до 0
Дигидроксиацетонфосфат ↔ глицеральдегид-3-фосфат 7,5 от 0 до 4
Глицеральдегид-3-фосфат + Ф н + НАД + ↔ 1,3-бисфосфоглицерат + НАДH + H + 6,3 от -2 до 2
1,3-бисфосфоглицерат + АДФ ↔ 3-фосфоглицерат + АТФ -18,8 от 0 до 2
3-фосфоглицерат ↔ 2-фосфоглицерат 4,4 от 0 до 0,8
2-фосфоглицерат ↔ фосфоенолпируват + H 2 O 7,5 от 0 до 3,3
Фосфоенолпируват + АДФ → пируват + АТФ -31,4 -16,7
Желтым выделены реакции необратимые в реальных условиях клетки

Общее уравнение гликолиза имеет следующий вид:

Суммарное количество энергии, выделяемой в процессе расщепления глюкозы до пирувата составляет 146 кДж / моль , на синтез двух молекул АТФ расходуется 61 кДж / моль, остальные 85 кДж / моль энергии превращается в тепло .

При полном окислении глюкозы до углекислого газа и воды выделяется 2 840 кДж / моль , если сравнить это значение с общим выходом екзергоничних реакций гликолиза (146 кДж / моль), то становится понятно, что 95% энергии глюкозы остается "заключенной" в молекулах пирувата . Хотя реакции гликолиза являются универсальными почти для всех организмов, дальнейшая судьба его продуктов - пирувата и НАД Н - отличается у разных живых существ и зависит от условий.


5. Включение других углеводов в процесс гликолиза

Кроме глюкозы в процессе гликолиза превращается еще большое количество углеводов , важнейшими из которых являются полисахариды крахмал и гликоген , дисахариды сахароза , лактоза , мальтоза и трегалоза , а также моносахариды , такие как фруктоза , галактоза и манноза .


5.1. Полисахариды

С другой стороны, эндогенные полисахариды, откладываются про запас в клетках растений (крахмал) и животных и грибов (гликоген), включаются в гликолиз другим путем. Они подлежат не гидролиза, а фосфоролиза, который осуществляют фермента фосфорилазы крахмала и гликогенфосфорилаза соответственно. Они катализируют атаку фосфорной кислоты на гликозидной α1 → 4 Связь между последним и предпоследним остатками глюкозы с нередукуючого конца. Продуктом реакции является глюкозо-1-фосфат. Глюкозо-1-фосфат превращается фосфоглюкомутазы на глюкозо-6-фосфат, который является промежуточным метаболитом гликолиза. Механизм такого превращения похож на Изомеризацию 3-фосфоглицерату до 2-фосфоглицерат. Фосфоролиза внутриклеточных полисахаридов выгоден тем, что позволяет сохранить часть энергии гликозидных связей благодаря образованию фосфорилированного моносахарида. Таким образом экономится одна молекула АТФ на одну молекулу глюкозы .


5.2. Дисахариды


5.3. Моносахариды

У большинства организмов нет отдельных путей для утилизации фруктозы , галактозы и маннозы . Все они превращаются в фосфорилированные производные и вступают в процесс гликолиза. Фруктоза , что попадает в организм человека с фруктами и в результате расщепления сахарозы в большинстве тканей, кроме печени , например в мышцах и почках , фосфорилируется гексокиназой в фруктозо-6-фосфата с использованием одной молекулы АТФ . В печени она имеет другой путь превращения: сначала фруктокиназы переносит фосфатную группу на C-1 фруктозы, образованный фруктозо-1-фосфат расщепляется фруктозо-1-фосфатальдолаза до глицеральдегид и дигидроксиацетонфосфату. Обе триозы превращаются в глицеральдгед-3-фосфат: первый - под влиянием триозокиназа, второй - под влиянием гликолитического фермента триозофосфатизомеразы .

Набор таких свойств позволяет гексокиназы IV эффективно выполнять свою функцию: регулировать уровень глюкозы в крови. При обычных условиях, когда он не превышает нормы (4-5 мМ), гексокиназа неактивна, связана регуляторным белком в ядре и не может катализировать фосфорилирование. Вследствие этого печень не конкурирует с другими органами по глюкозу, а вновь в глюконеогенезе молекулы могут свободно выходить в кровь. Когда уровень глюкозы в крови возрастает, например после употребления пищи богатой углеводами, она быстро транспортируется GLUT2 в гептациты и вызывает диссоциацию глюкокиназы и регуляторного белка, после чего фермент может катализировать реакцию фосфорилирования .

Гексокиназа IV также регулируется на уровне биосинтеза белка , ее количество в клетке увеличивается, когда растут энергетические потребности, о чем может свидетельствовать низкая концентрация АТФ, высокая концентрация АМФ т.д..

Некоторые из модуляторов активности ФФК-1 влияют также на фермент фруктозо-1 ,6-бисфосфатазу, которая катализирует в глюконеогенезе реакцию превращения фруктозо-1 ,6-бисфосфат в фруктозо-6-фосфат, но противоположным образом: ее ингибирует АМФ и Ф-2 ,6-БФ. Итак активация гликолиза в клетке сопровождается угнетением глюконеогенеза и наоборот. Это необходимо для предотвращения лишним затратам энергии в так называемых сусбтартних циклах .


6.3. Пируваткиназа

У млекопитающих найдено как минимум три изоферменты пируваткиназы, что экспрессируются в различных тканях. Эти изоферменты имеют много общего, например все они подавляются высокими концентрациями ацетил-КоА, АТФ и длинноцепочечных жирными кислотами (показатели того, что клетка хорошо обеспечена энергией) , а также аланином (аминокислота, которая синтезируется из пирувата) . Фруктозо-1 ,6-бисфосфат активирует различные изоферменты пируваткиназы . Однако печеночная изоформа (пируваткиназа L) отличается от мышечной (пируваткиназы M) наличием еще одного способа регуляции - путем ковалентной модификации фосфатной группой. В ответ на низкий уровень глюкозы в крови поджелудочной железой выделяется глюкагон, активирующий цАМФ-зависимой протеинкиназы. Этот фермент фосфорилирует пируваткиназы L, вследствие чего последняя теряет свою активность. Итак гликолитического расщепления глюкозы в печени замедляется и ее могут использовать другие органы .


7. Гликолиз в раковых клетках

1928 Отто Варбург обнаружил, что в раковых клетках почти всех типов гликолиз и поглощения глюкозы происходит примерно в 10 раз интенсивнее, чем у здоровых, даже в присутствии больших концентраций кислорода. Эффект Варбурга стал основой для разработки нескольких методов выявления и лечения рака .

Все раковые клетки, по крайней мере на начальных этапах развития опухоли растут в условиях гипоксии , т.е. недостатка кислорода, из-за отсутствия сетки капилляров . Если они расположены на расстоянии более 100-200 мкм от ближайшей кровеносного сосуда, то должны полагаться только на гликолиз без дальнейшего окисления пирувата для получения АТФ. Йомвирно, что почти во всех раковых клетках в процессе злокачественной трансформации происходят следующие изменения: переход на получение энергии только путем гликолиза и приспособления к условиям повышенной кислотности , возникающие вследствие выделения молочной кислоты в межклеточную жидкость . Чем более агрессивная опухоль, тем быстрее в ней происходит гликолиз .

Приспособления раковых клеток к недостатку кислорода во многом происходит благодаря транскрипционных факторов индуцированном гипоксией (англ. hypoxia-inducible transcription factor, HIF-1 ), Который стимулирует повышение экспрессии как минимум восьми генов гликолитических ферментов, а также транспортеров глюкозы GLUT1 и GLUT3, активность которых не зависит от инсулина. Еще одним ефекторм HIF-1 является выделение клетками васкулярного эндотелиального фактора роста (англ. vascular endothelial growth factor ), Что стимулирует образование кровеносных сосудов в опухоли . HIF-1 также выделяется мышцами во время тренировок, предусматривающие большую интенсивность нагрузки, в этом случае он имеет аналогичный эффект: усиливает способность к анаэробного синтеза АТФ и стимулирует рост капилляров .

В некоторых случаях повышенная интенсивность гликолиза может быть использована для нахождения местоположения опухоли в организме с помощью позитрон-эмиссионной томографии (ПЭТ). Пациенту в кровь вводят аналог глюкозы 2-флюоро-2-дезоксиглюкозу (ФДГ), меченый изотопом 18 F. Это вещество поглощается клетками и является субстратом для первого фермента гликолиза - гексокиназы, однако не может быть преобразована фосфоглюкоизмеразою, поэтому накапливается в цитоплазме. Скорость накопления зависит от интенсивности захвата аналога глюкозы и его фосфорилирования, оба процесса значительно быстрее происходят в раковых клетках, чем у здоровых. При распаде..

  • Губский Ю.И. Биологическая химия. - С. 191. - Киев-Одесса: Новая книга, 2007. ISBN 978-966-382-017-0 .
  • Ответ оставил Гость

    Мы можем определить общее количество молекул АТФ, которое образуется при расщеплении 1 молекулы глюкозы при оптимальных условиях. 1. Во время гликолиза образуются 4 молекулы АТФ: 2 молекулы АТФ расходуются на первом этапе фосфорилирования глюкозы, необходимого для хода процесса гликолиза, чистый выход АТФ при гликолизе равен 2 молекулам АТФ. 2. В итоге цикла лимонной кислоты образуется 1 молекула АТФ. Однако в связи с тем, что 1 молекула глюкозы расщепляется на 2 молекулы пировиноградной кислоты, каждая из которых проходит оборот в цикле Кребса, получается чистый выход АТФ на 1 молекулу глюкозы, равный 2 молекулам АТФ. 3. При полном окислении глюкозы суммарно образуются 24 атома водорода в связи с процессом гликолиза и циклом лимонной кислоты, 20 из них окисляются в соответствии с хемо-осмотическим механизмом с выделением 3 молекул АТФ на каждые 2 атома водорода. В итоге получается еще 30 молекул АТФ. 4. Четыре оставшихся атома водорода выделяются под влиянием дегидрогеназ и включаются в цикл хемоосмотического окисления в митохондриях помимо первой стадии. Окисление 2 атомов водорода сопровождается получением 2 молекул АТФ, в итоге получается еще 4 молекулы АТФ. Сложив все полученные молекулы, получим 38 молекул АТФ как максимально возможное количество при окислении 1 молекулы глюкозы до углекислого газа и воды. Следовательно, 456000 калорий могут сохраняться в виде АТФ из 686000 калорий, получаемых при полном окислении 1 грамм-молекулы глюкозы. Эффективность преобразования энергии, обеспечиваемая этим механизмом, составляет около 66%. Остальные 34% энергии преобразуются в тепловую и не могут быть использованы клетками для выполнения специфических функций. Выделение энергии из гликогена Продолжительное высвобождение энергии из глюкозы, когда клетки не нуждаются в энергии, было бы слишком расточительным процессом. Гликолиз и последующее окисление атомов водорода постоянно контролируются в соответствии с потребностями клеток в АТФ. Этот контроль осуществляется многочисленными вариантами управляющих механизмов обратной связи в ходе химических реакций. К числу наиболее важных влияний такого рода можно отнести концентрацию АДФ и АТФ, контролирующую скорость химических реакций в ходе процессов обмена энергии. Одним из важных путей, позволяющих АТФ управлять обменом энергии, является ингибирование фермента фосфофруктокиназы. Этот фермент обеспечивает образование фруктозо-1,6-дифосфата - одной из начальных стадий гликолиза, поэтому результирующим влиянием избытка АТФ в клетке будет торможение или даже остановка гликолиза, что, в свою очередь, приведет к торможению обмена углеводов. АДФ (равно как и АМФ) оказывает противоположное влияние на фосфофруктокиназу, существенно повышая ее активность. Когда АТФ используется тканями для энергообеспечения большинства химических реакций в клетках, это уменьшает ингибирование фермента фосфофруктокиназы, более того, его активность повышается параллельно увеличению концентрации АДФ. В результате запускаются процессы гликолиза, приводящие к восстановлению запасов АТФ в клетках. Другой способ управления опосредован цитратами, образующимися в цикле лимонной кислоты. Избыток этих ионов существенно снижает активность фосфофруктокиназы, что не дает гликолизу опережать скорость использования пировиноградной кислоты, образующейся в результате гликолиза в цикле лимонной кислоты. Третий способ, с помощью которого система АТФ-АДФ-АМФ может контролировать обмен углеводов и управлять выделением энергии из жиров и белков, заключается в следующем. Возвращаясь к различным химическим реакциям, служащим способом выделения энергии, мы можем заметить, что если весь имеющийся в наличии АМФ уже превращен в АТФ, дальнейшее образование АТФ становится невозможным. В результате прекращаются все процессы использования питательных веществ (глюкозы, белков и жиров) для получения энергии в виде АТФ. Лишь после использования образовавшегося АТФ в качестве источника энергии в клетках для обеспечения разнообразных физиологических функций вновь появляющиеся АДФ и АМФ запустят процессы получения энергии, в ходе которых АДФ и АМФ преобразуются в АТФ. Этот путь автоматически поддерживает сохранение определенных запасов АТФ, кроме случаев экстремальной активности клеток, например при тяжелых физических нагрузках